
	
	
	
	
	
Radiobiological	Modeling	with	Mathematicaâ	
A	Voxel-Based	Functional	Programming	Approach	

	
	
	
	
	
	
	
	
	
	
	
	

William	Kassing,	PhD	
University	of	Cincinnati	

	
	

	 ii	

Copyright	William	Kassing	2024	
	
Note:	This	is	just	for	educational	and	investigational	purposes,	not	for	clinical	decision	making.	
	
	

	 iii	

	
	
	
	
	
	
	
	

To	Jan	

	 iv	

Preface
	
	
In	 this	 book	 we	 use	Mathematica	 to	 model	 the	 5Rs	 of	 radiobiology	 at	 the	 voxel	 level	 using	
functional	programming,	where	programs	are	seen	as	compositions	of	functions	from	beginning	
to	end.	We	also	use	Python/Pydicom	in	an	imperative	manner	for	input	and	output	tasks	such	as	
accessing	and	manipulating	the	DICOM	RT	Dose	and	RT	Structure	set	files.	
	
We	begin	by	developing	a	 convolution	method	 for	 calculating	 the	BED	 in	 the	voxels	given	any	
dose-rate	input	function	whether	discrete	and	pulse-like	or	exponentially	varying.	We	then	add	
to	 that	 a	 repopulation	model,	 a	model	 to	account	 for	 cell	 cycle	effects,	 a	 reoxygenation	model,	
and	a	model	accounting	for	intrinsic	tissue	radiosensitivity.	Finally,	we	allow	for	variation	in	any	
of	the	model	parameters	using	a	normal	or	a	lognormal	distribution.	
	
Thus,	under	one	framework,	the	5Rs	of	radiobiology	can	be	modeled	at	the	voxel	level,	and	the	
functions	describing	these	models	can	be	combined	as	compositions	of	functions	to	account	for	a	
wide	range	of	biological	effects.	The	functions	developed	are	fairly	simple,	fundamental	models	
and	could	be	expanded	upon	in	the	future.	One	of	the	benefits	of	functional	programming	is	since	
everything	 is	seen	as	a	 function	these	 functions	can	be	easily	modified	and	expanded.	Also,	we	
limit	our	scope	in	this	book	to	tumor	voxels	and	do	not	include	normal	tissue	effects.	
	
We	begin	by	accessing	the	DICOM	RT	Dose	and	RT	Structure	set	files	to	determine	which	voxels	
lie	within	the	contours	of	 interest.	We	also	determine	the	doses	in	each	of	the	voxels.	Knowing	
the	 dose	 and	 dose-rate	 input	 functions	 (e.g.,	 conventional	 fractionation,	 Gamma	 Knife	
radiosurgery,	 LDR,	 HDR,	 brachytherapy,	 radionuclide	 therapy,	 etc.)	 we	 can	 develop	 dose-rate	
input	functions	for	each	voxel.	Then	a	convolution	between	these	absorbed	dose-rate	functions	
and	the	DNA	repair	functions	gives	the	BED	in	each	voxel.	This	is	the	starting	point	to	which	the	
other	4Rs	of	radiobiology	(repopulation,	redistribution,	reoxygenation,	radiosensitivity)	can	be	
included	 as	 well.	 The	 effects	 on	 the	 tumor	 TCP	 can	 be	 explored	 under	 variations	 of	 these	
conditions.	Finally,	the	BEDs	calculated	in	Mathematica	can	be	exported	back	into	the	DICOM	RT	
Dose	file	to	display	the	BED	on	the	treatment	planning	computer.	
	
The	 purpose	 of	 this	 book	 is	 to	 introduce	 functional	 programming	 as	 a	 method	 to	 use	 for	
problems	 of	 this	 type.	 Functional	 programming	 has	 some	 unique	 capabilities	 not	 seen	 in	
traditional	imperative	languages,	and	“functional	thinking”	in	general	comes	naturally	to	those	in	
the	medical	physics	community.	Some	of	the	commands	may	be	new	(e.g.,	Map,	Nest,	Fold,	Part,	
Apply,	and	so	on)	and	the	list	structure	for	representing	arrays	may	seem	unfamiliar	at	first,	but	
when	 one	 compares	 the	 size	 of	 the	 resulting	 programs	 to	 those	 of	 a	 comparable	 imperative	
programs,	the	efficiency	is	apparent.	
	
Once	 within	Mathematica,	 everything	 is	 seen	 as	 a	 function,	 and	 as	 we	 will	 see	 functions	 in	
functional	programming	are	treated	as	first-class	citizens,	meaning	they	can	be	passed	around	as	
arguments,	 returned	 from	 other	 functions,	 and	 assigned	 to	 variables,	 which	 allows	 for	 the	
creation	of	higher-order	functions,	which	take	one	or	more	functions	as	arguments.	We	will	see	
that	this	is	very	useful	in	creating	higher-order	composite	functions.	
	

	 v	

One	of	the	datasets	that	is	used	in	this	book	as	an	example	is	an	11x10x9	set	of	voxels.	A	region	
through	those	voxels	is	shown	below.	In	red	are	tumor	voxels	while	dark	blue	represents	normal	
tissue.	 Within	 each	 voxel	 we	 will	 know	 the	 absorbed	 dose-rate	 input	 function	 (from	 the	
treatment	planning	computer)	along	with	many	other	characteristics	of	the	voxels.	Some	of	the	
voxels	may	be	 repopulating,	 some	may	be	distributed	 through	various	phases	of	 the	 cell	 cycle	
while	others	may	be	more	stationary,	and		some	of	the	of	the	voxels	may	be	more	hypoxic	than	
neighboring	voxels.		
	
	

	
	
	

These	are	some	of	the	things	we	can	investigate	using	this	functional	approach.	And	the	process	
is	dynamic	as	well,	with	the	voxel	characteristics	changing	over	time,	the	tumor	either	growing	
or	shrinking	with	time.	
	
This	book	represents	a	modest	attempt	 to	explore	 radiobiological	modeling	 for	 investigational	
and	educational	purposes	using	techniques	of	functional	programming.	Much	could	be	added	to	
improve	upon	the	models.	It	is	hoped	that	some	investigators	or	students	may	find	some	of	the	
methods	useful	and	may	even	contribute	to	their	further	development.	Some	may	find	it	useful	to	
see	how	DICOM	files	are	manipulated	and	processed	as	in	the	Appendices.	
	
Mathematica	and	other	files	from	this	book	can	be	found	at	www.kassing.com.	
	
	
William	Kassing,	2024	
	

	 vi	

Acknowledgements

I	would	like	to	thank	Dr.	Ronald	Warnick	and	Mr.	John	Thaman	for	providing	anonymized	data	
files	of	 actual	Gamma	Knife	 radiosurgery	 cases	 that	were	used	 in	developing	 the	methodology	
described	in	this	book.	Some	of	this	data	and	the	results	obtained	from	it	are	shown	in	the	book	
including	the	figure	on	the	cover.	
	
I	also	thank	Dr.	Derek	Moyer	and	Dr.	Michael	Platt,	former	graduate	students	at	the	University	of	
Cincinnati,	for	providing	assistance	with	Pydicom	Python	programming.	
	
Before	his	 untimely	death,	Dr.	Howard	Elson	was	 actively	 involved	 in	 this	 project	 and	offered	
valuable	advice	and	encouragement	that	was	much	appreciated	and	is	greatly	missed.	
	
Finally,	 I	would	 like	 to	 extend	my	 gratitude	 to	 the	 following	 individuals	who	 have,	 in	 various	
ways,	 contributed	 to	 the	 creation	 of	 this	 book:	 Albert	 Balcells,	 Richard	 Bozian,	 Roy	 Eckart,	
Richard	 Gass,	 Dan	 Ionascu,	 Randy	 Janke,	 Robert	 Janke,	 Michael	 Lamba,	 Frank	 Pinski,	 Ronald	
Sachs,	Henry	 Spitz,	 Stephen	Thomas,	David	Roesener,	Norma	Wagoner,	 and	 former	 colleagues	
and	students	at	the	Barrett	Cancer	Center	in	Cincinnati.	

	 vii	

About the Author

Dr.	William	Kassing	retired	from	the	University	of	Cincinnati	Medical	Center	as	a	Senior	Medical	
Physicist	 in	 2021.	He	 is	 currently	Adjunct	Associate	 Professor	 in	 the	Department	 of	Radiation	
Oncology	at	the	University	of	Cincinnati	where	he	has	taught	radiation	biology	for	over	25	years.	

	 viii	

Table of Contents
	
	
Preface	 iv	
	
Acknowledgements	 vi	
	
About	the	Author	 vii	
	
1.	Introduction	 1	
	
2.	Functional	Programming	 2	
	
3.	Voxel-Based	Radiobiological	Modeling	 	
	 3.1	The	Linear	Quadratic	Model	..	6	
	 3.2	Repair	Model	...	8	
	 3.3	Repopulation	Model	..	12	
	 3.4	Redistribution	Model	..	14	
	 3.5	Reoxygenation	Model	...	16	
	 3.6	Radiosensitivity	Model	...	17	
	 3.7	Heterogeneity	Model	...	18	
	 3.8	Tumor	Control	Probability	Model	...	18	
	
4.	Functional	Implementation	 	
	 4.1	Input	and	Output	...	21	
	 4.2	Repair	...	22	
	 4.3	Repopulation	..	30	
	 4.4	Redistribution	..	31	
	 4.5	Reoxygenation	...	33	
	 4.6	Radiosensitivity	and	Heterogeneity	...	34	
	 4.7	Clonogen	Number	and	Dose	Heterogeneity	..	35	
	 4.8	Tumor	Control	Probability	...	37	
	
5.	Functional	Results	 	
	 5.1	Repair	...	41	
	 5.2	Repopulation	..	43	
	 5.3	Redistribution	..	44	
	 5.4	Reoxygenation	...	45	
	 5.5	Radiosensitivity	and	Heterogeneity	...	47	
	 5.6	Clonogen	Number	and	Dose	Heterogeneity	..	48	
	 5.7	Tumor	Control	Probability	...	50	
	
6.	Conclusions	 52	
	
References	 53	
	
	

	 ix	

Appendices	 	
	
A.	Functional	Programming	...	56	
B.	Linear	Quadratic	Modeling	..	58	
C.	DICOM	RTDose	File	...	64	
D.	DICOM	RTSTRUCT	File	..	66	
E.	Determining	which	Voxels	lie	within	the	Contours	-	Imperatively	..	68	
F.	Determining	which	Voxels	lie	within	the	Contours	-	Functionally	...	72	
G.	Obtaining	Vertices	of	Contour	Polygons	..	76	
H.	Creating	a	List	of	Shot	Times	and	Shot	Dose	Rates	in	each	Voxel	..	77	
I.	Importing	the	List	of	Shot	Times	and	Shot	Dose	Rates	into	Mathematica	78	
J.	Gamma	Knife	Case	..	79	
K.	Exporting	the	Results	out	of	Mathematica	...	85	
L.	Changing	the	Original	DICOM	Dose	File	to	a	DICOM	BED	File	..	86	
M.	Voxel	Graphics	..	87	
N.	Thirty	Fraction	Case	...	89	
O.	Three	Fraction	Case	..	92	
P.	Hyperfractionation	..	95	
Q.	LDR	and	HDR	...	98	
R.	PDR	...	101	
S.	I-125	and	Pd-103	Treatment	...	105	
T.	Radionuclide	Therapy	..	110	
	
Index	 	 	 	 	 	 	 	 	 	 	 	 	 113

	 1	

	

1. Introduction
	
	
Technological	 advances	 in	 radiation	 therapy	 in	 recent	 years	 have	made	 it	 possible	 to	 deliver	
radiation	 dose	 to	 a	 patient	 with	 a	 higher	 level	 of	 accuracy	 and	 precision	 than	 ever	 before.	
Ongoing	developments	and	refinements	in	radiation	dose	delivery,	image	guidance,	and	motion	
management	have	been	responsible	for	these	advances,	allowing	for	a	high	level	of	control	of	the	
radiation	dose	distribution	 in	a	patient.	With	such	 impressive	advances	 in	dose	delivery,	many	
investigators	have	set	their	sights	on	another	frontier	in	radiotherapy,	the	biological	frontier.	
	
Biological	 information	 obtained	 from	 individual	 patients	 through	 functional	 or	 molecular	
imaging	studies,	or	by	using	predictive	assays	and	other	biomarkers,	gives	the	promise	of	more	
individualized	 or	 patient-specific	 radiation	 treatments.	 This	 is	 the	 goal	 of	 personalized	 or	
precision	medicine	in	general	and	will	be	an	ongoing	challenge	and	active	area	of	investigation	in	
the	field	of	radiation	therapy.	
	
Patient-specific	 information	 that	 can	 be	 used	 to	 better	 characterize	 an	 individual’s	 radiation	
response	include	that	of	tumor	and	normal	tissue	radiosensitivity,	DNA	repair	rates	and	kinetics,	
proliferative	 (tissue	 repopulation)	 response	 characteristics,	 tissue	 oxygen	 concentration,	 and	
tumor	 burden	 (clonogen	 density).	 Using	 this	 and	 other	 biological	 information,	 radiobiological	
models	of	 tumor	 control	probability	 (TCP)	 and	normal	 tissue	 complication	probability	 (NTCP)	
can	be	personalized	allowing	radiation	treatments	to	be	better	tailored	to	individual	patients.	
	
This	 approach	 has	 been	 variously	 referred	 to	 as	 biologically	 optimized	 treatment	 planning,	
biologically	 conformal	 radiotherapy,	 theragnostic	 imaging	 and	 dose	 painting,	 and	 biologically	
guided	radiation	therapy	(BGRT).	Guided	by	biological	information	at	the	voxel	level,	customized	
treatment	 plans	 with	 non-uniform	 physical	 dose	 distributions	 can	 be	 generated	 that	 yield	
improved	biological	dose	distributions.	Such	an	approach	can	lead	to	patient-specific	TCP	maps	
and	(much	more	challenging	 to	model)	NTCP	maps	which	give	 the	potential	 for	 improving	 the	
therapeutic	ratio	in	individual	patients.	
	
This	emerging	area	of	investigation	has	promise	to	benefit	radiotherapy	patients	in	the	future.	In	
this	book	we	explore	biological	modeling	at	the	voxel	 level	using	functional	programming	with	
Mathematica.	We	model	the	5Rs	of	radiobiology	and	show	that	functional	programming	is	a	style	
of	 computer	 programming	 that	 provides	 a	 natural,	 powerful,	 and	 elegant	 approach	 for	 use	 in	
investigations	of	this	type.		
	
	
	

	 2	

2. Functional Programming
	
	
Functional	 programming	 is	 not	 as	 well-known	 as	 the	 more	 traditional	 and	 mainstream	
imperative	programming,	but	it	has	been	growing	in	popularity	in	recent	years	and	this	trend	is	
likely	to	continue.	Functional	programming	is	fascinating	in	its	own	right,	its	foundations	in	the	
lambda	calculus	played	an	important	role	in	the	history	of	computer	science,	and	it	has	unique	
characteristics	 that	 make	 it	 a	 powerful	 programming	 paradigm	 for	 certain	 types	 of	 problem	
solving,	 including	 those	 explored	 in	 this	 book.	Appendix	A	has	 a	more	detailed	 explanation	 of	
functional	programming,	here	we	give	just	a	brief	overview	emphasizing	those	aspects	that	are	
most	useful	in	voxel-based	radiobiological	modeling.		
	
Functional	 programming	 is	 essentially	 mathematical	 programming,	 using	 functions	 and	
functional	thinking	to	accomplish	our	goal.	This	is	a	very	natural	type	of	programming	for	those	
in	the	medical	physics	community	where	functions	are	common	and	familiar.	We	translate	what	
we	want	 to	 accomplish	 into	 a	 composition	 of	mathematical	 functions	 in	 a	 declarative	manner	
(rather	than	imperatively;	see	Appendix	A)	producing	functional	programs	that	are	both	elegant	
and	powerful,	and	often	more	concise	and	easier	to	read	than	comparable	imperative	programs.	
		

	

	
Important	Properties	of	Functional	Languages	

	
	
Functions	 in	 functional	 programming	 are	 treated	 as	 first-class	 citizens,	 meaning	 they	 can	 be	
passed	 around	 as	 arguments,	 returned	 from	 other	 functions,	 and	 assigned	 to	 variables.	 This	
allows	 for	 the	 creation	 of	 higher-order	 functions,	 which	 take	 one	 or	 more	 functions	 as	
arguments.	An	example	of	a	higher-order	function	is	the	Map	function	described	below.	It	takes	
as	arguments	a	given	function	and	a	collection	of	elements	(which	in	Mathematica	is	a	list)	and	
returns	a	new	list	with	the	function	applied	to	each	element	of	the	list.	The	Map	function	is	both	a	
higher	 level	 abstraction	 and	 a	 declarative	 command.	 With	 this	 function	 we	 declare	 to	 the	
program	 that	we	want	 to	 apply	 a	mapping	 of	 a	 function	 over	 a	 list	 of	 data,	 and	we	 leave	 the	
details	 of	 the	 implementation	 (such	 as	 explicit	 looping)	 to	 the	 program.	 Shorter	 and	 easier	 to	
read	 programs	 result,	 and	 sometimes	 what	 would	 take	 many	 lines	 of	 code	 in	 an	 imperative	
language	can	be	done	with	a	single	line	of	code	(called	a	one-liner)	in	a	functional	language.	
	
Another	 benefit	 of	 functional	 programming	 is	 that	 the	 internal	 state	 of	 the	 system	 does	 not	
change	during	the	computation,	which	implies	that	there	are	no	side	effects	as	seen	in	imperative	

	 3	

programs,	as	well	as	no	strict	evaluation	order	of	the	functions	making	up	the	overall	program.	
For	these	reasons,	functional	programs	are	more	easily	parallelized	for	multicore	computations	
than	 are	 imperative	 programs,	 which	 is	 a	 major	 reason	 for	 the	 increase	 in	 popularity	 of	
functional	programming.	 In	 this	book,	a	variant	of	 the	Map	 function	called	ParallelMap	 is	used	
which	automatically	distributes	the	computation	among	the	available	kernels	and	processors	of	
the	computer	being	used.	With	 large	datasets	containing	many	voxels,	 it	 is	 this	ability	to	easily	
distribute	 the	 computation	 over	 multiple	 processors	 that	 makes	 voxel-based	 radiobiological	
modeling	feasible.	
	
Higher-order	functions,	such	as	Map	and	ParallelMap,	as	we	have	seen,	accept	other	functions	as	
arguments	and	hide	 the	details	of	 the	machinery	of	 the	underlying	algorithms	 that	accomplish	
their	 tasks.	 Other	 very	 general	 and	 useful	 higher-order	 functions	 that	 are	 used	 in	 this	 book	
include	Flatten,	Partition,	Apply,	Part,	Select,	Nest,	NestList,	Fold,	and	FoldList.	Thinking	about	a	
problem	 in	 terms	of	 functions	 such	 as	 these	 (i.e.,	 functional	 thinking)	 allows	us	 to	 approach	 a	
problem	 at	 a	 higher	 level	 of	 abstraction	 than	 we	 normally	 would	 when	 we	 program	 with	
traditional	 imperative	 languages.	 Mathematica	 includes	 all	 the	 well-known	 mathematical	
functions	 as	 well,	 and	 these	 functions	 can	 be	 used	 in	 constructing	 specialized	 radiobiological	
modeling	 functions.	Mathematical	 functions	used	 in	 this	book	 include	 Integrate,	Exp,	UnitStep,	
RandomChoice,	RandomVariate,	NormalDistribution,	and	LogNormalDistribution.	
	
We	want	 to	map	 radiobiological	 functions	 over	 the	 voxels	 of	 interest	 taking	 into	 account	 the	
specific	 characteristics	 of	 the	 individual	 voxels.	 The	 voxels	 themselves	 are	 represented	 as	
elements	in	a	list.	Lists	are	the	primary	data	structures	in	functional	languages,	and	nested	lists	
are	 used	 to	 represent	 the	 arrays	 of	 imperative	 languages.	 Lists	 are	 actually	 a	 special	 type	 of	
function	 themselves,	 since	 in	 functional	programming	everything	 is	 seen	as	 a	 function,	 even	 if	
just	a	constant	 function.	 In	Mathematica,	a	collection	of	objects	 is	grouped	together	 in	a	 list	by	
using	the	List	function	
	

List[voxel1,	voxel2,	voxel3,	…]	
	
or	equivalently	by	enclosing	the	objects	in	curly	brackets	
	

{voxel1,	voxel2,	voxel3,	…}	
	
where	voxel1,	voxel2,	…,	are	lists	themselves,	containing	information	about	the	individual	voxels,	
such	as	the	dose-rate	input	function,	the	DNA	repair	rate	function,	voxel	type	including	the	α β⁄ 	
ratio,	 radiosensitivity,	 proliferative	 capacity,	 cell	 cycle	phase,	 tissue	oxygen	 concentration,	 and	
other	 characteristics	 used	 in	 the	 radiobiological	 modeling.	 The	 voxels	 above	 are	 grouped	
together	in	a	one-dimensional	list,	but	they	can	also	be	grouped	together	in	a	higher-dimensional	
nested	 list	 representing	 the	 slices,	 rows,	 and	 columns	 of	 the	 medical	 imaging	 dataset.	 In	
Mathematica,	 the	 functions	 Partition	 and	 Flatten	 are	 used	 to	 convert	 back	 and	 forth	 between	
one-dimensional	and	multi-dimensional	lists.	
	
Radiobiological	 functions	 can	 be	mapped	 over	 these	 lists	 in	 a	 very	 efficient	manner	 using	 the	
Map	function	introduced	above.	The	complete	list	data	structure	is	passed	into	the	Map	function	
as	an	argument	and	the	radiobiological	function	of	interest	is	applied	to	all	of	the	elements	in	the	
list	 and	 an	 updated	 list	 is	 returned	 containing	 the	 transformed	 values.	 For	 example,	 here	we	
show	the	mapping	of	a	general	radiobiological	function	called	RadiobiologicalFunction	over	the	

	 4	

voxels	to	produce	the	biologically	effective	dose	(BED)	in	each	voxel.	We	give	the	voxel	list	data	
structure	the	name	Voxels	
	

Voxels	=	{voxel1,	voxel2,	voxel3,	…}	
	
and	we	map	the	radiobiological	function	over	this	list	as	follows	
	

Map[RadiobiologicalFunction[Voxels]]	
	
to	produce	another	list	containing	the	voxel	BEDs	which	we	call	VoxelBEDs	
	

VoxelBEDs	=	{BED1,	BED2,	BED3,	…}	
	
These	 BED	 values	 can	 be	 modified	 further,	 for	 example,	 by	 converting	 them	 into	 TCPs	 as	
demonstrated	later.	The	mapping	is	performed	in	a	functional	manner,	where	there	is	simply	an	
input	 list	 of	 voxels	 containing	 information	 about	 each	 voxel,	 the	 evaluation	 of	 a	 composite	
function	over	this	list,	and	the	resulting	output	list	of	BED	values	in	each	voxel.		
	
A	 graphical	 representation	 of	 an	 imaging	 dataset	 that	 will	 be	 used	 later	 in	 this	 book	 from	 a	
Gamma	 Knife	 radiosurgery	 case	 consisting	 of	 990	 voxels	 is	 shown	 below.	 The	 red	 voxels	 are	
tumor	and	the	blue	voxels	are	surrounding	normal	tissue.	
	
	

	
	
	

In	 essence,	 what	we	will	 be	 doing	 is	mapping	 a	 RadiobiologicalFunction	 over	 these	 voxels	 as	
shown	here	

	
	
where	the	RadiobiologicalFunction	is	itself	a	composition	of	other	functions.	That	is,	
	

RadiobiologicalFunction	=	Function[Function[Function[Function…]]].	
	
This	 is	 functional	programming	in	a	nutshell,	 the	program	is	simply	a	composition	of	 functions	
from	beginning	to	end.	
	

	 5	

A	graphic	from	another	imaging	dataset	of	a	larger	tumor	is	shown	below	in	Figure	1.	This	shows	
some	hypothetical	 examples	of	what	 can	be	done	with	 functional	programming.	Tumor	voxels	
are	 shown	 in	 red,	 while	 normal	 tissue	 voxels	 are	 shown	 in	 dark	 blue.	 Also	 displayed	 are	
hypothetical	 cases	 showing	 hypoxic	 voxels	 (Fig.	 1b),	 voxels	 containing	 proliferating	 cells	 (Fig.	
1c),	and	voxels	with	a	dose	deficit	(Fig.	1d),	demonstrating	various	clinical	situations	that	can	be	
investigated	at	the	voxel	level	by	mapping	functions	over	the	voxels.	These	regions	could	grow	or	
shrink	with	time	as	well.	
	

	

(a) (b)

(c) (d)

Figure	1.	(a)	Tumor	voxels	in	red,	normal	tissue	voxels	in	dark	blue.	(b)	Hypoxic	
voxels	in	light	blue.	(c)	Proliferating	voxels	in	green.	(d)	Voxels	with	a	dose	
deficit	in	yellow.	

	 6	

3. Voxel-Based Radiobiological Modeling
	
	
Our	goal	is	to	map	radiobiological	functions	over	the	voxels	in	a	radiotherapy	treatment	plan.	We	
can	do	so	in	both	tumor	and	normal	tissue	voxels	for	a	variety	of	purposes.	In	this	book	we	limit	
our	scope	 to	 tumor	voxels,	 calculating	 the	BED	 in	 the	 individual	voxels,	 and	 from	these	values	
and	an	estimate	of	the	clonogen	number	per	voxel,	we	calculate	the	TCP	in	the	voxels	and	thence	
in	 the	 tumor	as	a	whole.	We	develop	models	 for	 the	5Rs	of	 radiobiology	(repair,	 repopulation,	
redistribution,	reoxygenation,	radiosensitivity)	and	we	investigate	their	effects	on	the	TCP	of	the	
tumor.	We	also	allow	for	variation	in	any	of	the	parameters	used	in	the	modeling,	accounting	for	
heterogeneity	seen	in	patient	populations.	
	

3.1 The Linear Quadratic Model
	
To	model	cell	survival,	we	begin	with	the	well-known	and	widely	used	 linear	quadratic	model,	
where	for	a	single	instantaneous	dose	of	radiation	D,	the	cell	surviving	fraction	(SF)	is	given	by	
	

𝑆𝐹 = exp(−𝛼𝐷 − 𝛽𝐷!) (1)	
	
where	𝛼	and	𝛽	are	tissue	specific	radiosensitivity	parameters.	A	mechanistic	basis	for	the	linear	
quadratic	 model	 has	 been	 proposed,	 and	 though	 certainly	 only	 an	 approximation	 of	 the	 true	
mechanism	 involved,	 it	 is	 a	 conceptually	 useful	 tool.	 In	 this	 model,	 DNA	 damage	 leading	 to	
double-strand	breaks	and	thence	cell	killing	can	occur	by	a	single-hit	(or	single	track	or	cluster)	
of	radiation,	or	by	a	double-hit	(or	double	track	or	cluster)	of	radiation.	The	single-hit	lesions	are	
always	 lethal	 in	 this	 model,	 while	 the	 double-hit	 lesions	 may	 be	 lethal	 or	 may	 be	 repaired,	
depending	on	the	rate	and	time	course	of	the	irradiation	(Bodey	et	al.	2004).	
	
Single-hit	 DNA	 lesions	 are	 governed	 by	 the	 𝛼	 term	 of	 the	 linear	 quadratic	 equation	 and	 are	
considered	irrepairable.	These	 lethal	 lesions	are	often	thought	of	as	double	strand	DNA	breaks	
that	lead	to	chromosomal	aberrations	(dicentrics,	rings,	and	anaphase	bridges)	which	lead	to	cell	
death	when	the	cell	attempts	mitosis	(mitotic	catastrophe).	Radiation	induced	apoptosis	can	lead	
to	cell	death	as	well,	 the	amount	dependent	on	the	tumor	and	tissue	type,	and	this	can	also	be	
modeled,	 but	 will	 not	 be	 considered	 in	 this	 book.	 The	 𝛼	 parameter	 gives	 the	 natural	 logs	 of	
irrepairable	 cell	 kill	 per	 unit	 dose	 of	 radiation.	Double-hit	DNA	 lesions	 are	 governed	by	 the	𝛽	
term	of	the	linear	quadratic	equation	and	are	considered	repairable.	These	lesions	are	thought	of	
as	sublethal	DNA	breaks,	and	depending	on	the	dose-rate	and	time	course	of	the	irradiation,	may	
be	 either	 correctly	 repaired	 or	 converted	 into	 lethal	 damage,	 as	 discussed	 below.	 The	 𝛽	
parameter	gives	 the	natural	 logs	of	repairable	cell	kill	per	unit	dose	squared	of	radiation.	Two	
units	of	dose	are	involved	because	this	component	of	cell	killing	is	made	up	of	the	interaction	of	
two	different	particles	(or	tracks	or	clusters)	of	radiation	(Brenner	2008,	Brenner	et	al.	1998).	
	
Taking	the	natural	logarithm	of	both	sides	of	the	linear	quadratic	equation	and	rearranging	gives	
	

−ln	𝑆𝐹 = 𝛼𝐷 + 𝛽𝐷! (2)	
	

	 7	

The	term	−ln	𝑆𝐹	is	called	the	logarithmic	cell	kill	or	biological	effect	E.	The	larger	the	biological	
effect,	 the	 more	 cells	 are	 killed	 by	 the	 radiation.	 Dividing	 the	 biological	 effect	 by	 the	
radiosensitivity	parameter	𝛼	gives	
	

−
ln 𝑆𝐹
𝛼 = 𝐷 +

𝐷!

𝛼 𝛽⁄
(3)	

	
The	term	on	the	left-hand	side	of	this	equation	is	defined	as	the	biologically	effective	dose	(BED),	
giving	

𝐵𝐸𝐷 = 𝐷 +
𝐷!

𝛼 𝛽⁄
(4)	

or	

𝐵𝐸𝐷 = 𝐷 \1 +	
𝐷

(𝛼 𝛽⁄)] (5)	

	
for	 a	 single	 instantaneous	 dose	 of	 radiation.	 In	 the	 formulation	 of	 BED	 in	 equation	 (4)	 and	 in	
those	that	follow	below,	the	BED	is	seen	to	be	made	up	of	two	terms.	The	first	term	is	the	total	
physical	dose	and	the	second	term	involves	the	interaction	of	two	units	of	dose	and	is	modified	
by	 the	𝛼 𝛽⁄ 	value.	 It	 is	 this	second	term	that	gives	rise	 to	 fractionation	and	protraction	effects,	
and	 tissues	with	 lower	𝛼 𝛽⁄ 	 values	 are	 influenced	more	 by	 these	 effects	 than	 are	 tissues	with	
higher	𝛼 𝛽⁄ 	values.	This	fact	gives	rise	to	the	well-known	phenomenon	of	late	responding	normal	
tissue,	 with	 a	 lower	 𝛼 𝛽⁄ 	 value,	 being	 influenced	 more	 by	 fractionation	 or	 protraction	 (i.e.,	
lengthening	the	treatment)	than	are	tumor	or	early	responding	normal	tissue	with	a	higher	𝛼 𝛽⁄ 	
value.		In	equation	(5)	the	BED	is	written	in	terms	of	the	total	dose	multiplied	by	what	is	called	
the	 relative	 effectiveness	 (RE).	 The	 relative	 effectiveness	 is	 a	 measure	 of	 how	 “effective”	 the	
treatment	 is,	 again,	with	 tissues	with	a	 lower	𝛼 𝛽⁄ 	 value	giving	 rise	 to	higher	BED	values	 than	
tissues	with	a	higher	𝛼 𝛽⁄ 	value,	the	RE	therefore	being	higher	for	those	tissues	with	lower	𝛼 𝛽⁄ 	
values.	
	
If	instead	of	giving	one	single	dose	D	of	radiation,	we	give	n	instantaneous	doses	of	size	d,	with	
time	 for	 full	 repair	 of	 sublethal	 damage	 between	 fractions,	 the	 initial	 part	 of	 the	 cell	 survival	
curve	is	repeated	with	each	fraction,	and	the	survival	fraction	can	be	written	
	

𝑆𝐹 = [exp(−𝛼𝑑 − 𝛽𝑑!)]" (6)	
	
or	
	

𝑆𝐹 = exp[𝑛(−𝛼𝑑 − 𝛽𝑑!)] (7)	
	
Taking	 the	 natural	 logarithm	 of	 both	 sides	 of	 the	 equation,	 rearranging	 and	 dividing	 by	 the	
radiosensitivity	parameter	𝛼	gives	
	

−
ln 𝑆𝐹
𝛼 ≡ 𝐵𝐸𝐷 = 𝑛𝑑 +	

𝑛𝑑!

(𝛼 𝛽⁄) (8)	

or	

𝐵𝐸𝐷 = 𝑛𝑑 \1 +	
𝑑

(𝛼 𝛽⁄)] (9)	

	

	 8	

which	is	the	familiar	equation	for	BED	for	fractionated	radiation.	This	equation	is	applicable	for	
instantaneous	doses	d	of	equal	size	with	full	repair	of	sublethal	damage	between	doses.	
	
A	 more	 general	 BED	 equation	 where	 the	 size	 of	 the	 dose	 per	 fraction	 may	 vary	 fraction	 to	
fraction	is	given	by	

𝐵𝐸𝐷 =f𝑑#

"

#$%

+	
1
𝛼 𝛽⁄ f𝑑#!

"

#$%

(10)	

	
Here	n	 instantaneous	 fractions	 are	 given,	 with	 sufficient	 time	 between	 fractions	 for	 complete	
repair	of	sublethal	damage.	
	
These	equations	for	BED	for	fractionated	dose	delivery	rely	on	the	assumptions	that	the	fraction	
durations	 are	 short	 and	 the	 inter-fraction	 times	 are	 long,	 compared	 to	 the	 rate	 of	 repair.	 This	
assures	that	the	repair	during	the	fraction	is	negligible	and	that	the	repair	between	fractions	is	
complete.	 If	 these	assumptions	do	not	hold,	 then	 incomplete	repair	during	treatment	will	alter	
the	BED	from	that	predicted	by	the	above	formulas.	
	

3.2 Repair	Model
	
A	 common	way	 to	 interpret	 incomplete	 repair	 during	 treatment	 is	 with	 the	 binary	misrepair	
model,	 where	 there	 are	 competing	 processes	 of	 correct	 repair	 of	 the	 DNA	 lesions	 and	 the	
incorrect	interaction	(misrepair)	of	the	two	(binary)	lesions	leading	to	lethality.	As	the	dose-rate	
is	 lowered	 or	 when	 fractionating	 the	 dose	 delivery,	 the	 two	 independent	 radiation	 induced	
lesions	 are	 likely	 to	 occur	 at	 different	 times	during	 irradiation,	 allowing	 for	 repair	 of	 the	 first	
DNA	 lesion	 before	 it	 can	 undergo	 binary	misrepair	with	 the	 second	 lesion.	 This	 phenomenon	
gives	 rise	 to	 the	 fractionation	 and	 protraction	 effects	 of	 the	 linear	 quadratic	 model	 (Brenner	
2008).	
	
Lea	 and	 Catcheside	 (1942)	 proposed	 a	 dimensionless	 time-protraction	 function,	 called	 G,	 to	
account	for	incomplete	repair	during	treatment.	In	this	model,	the	survival	fraction	is	written	as	
	

𝑆𝐹 = exp(−𝛼𝐷 − 𝛽𝐺𝐷!) (11)	
	
and	the	biological	effect	is	given	by	
	

−ln	𝑆𝐹 = 𝛼𝐷 + 𝛽𝐺𝐷! (12)	
	
where	
	

𝐺 = 2/𝐷&!i 𝐷̇(𝑡)𝑑𝑡
&

'
i 𝐷̇(𝑤)
(

'
𝑒)*((),)𝑑𝑤 (13)	

	
In	this	equation,	𝐷& 	is	the	total	dose,	𝐷̇(𝑡)	is	a	function	describing	the	variation	in	dose-rate	over	
the	entire	course	of	the	treatment,	and	𝜇	 is	the	repair	rate	constant.	The	term	after	the	second	
integral	 sign	 can	 be	 thought	 of	 as	 the	 first	 of	 a	 pair	 of	 DNA	 lesions,	 which	 decays	 away	
exponentially	with	rate	constant	𝜇,	while	the	term	after	the	first	integral	sign	refers	to	the	second	

	 9	

DNA	lesion,	which	can	interact	with	what	remains	of	the	first	lesion	after	repair	(Brenner	2008).	
G	acts	only	on	the	quadratic,	repairable	part	of	the	linear	quadratic	equation.	
	
The	BED	equation	(5)	can	be	written	as	
	

𝐵𝐸𝐷(𝑇) = 𝐷& \1 +	
𝐷& ∙ 𝐺(𝑇)
(𝛼 𝛽⁄)] (14)	

	
or	
	

𝐵𝐸𝐷(𝑇) = 𝐷& +	
𝐷&[𝐷& ∙ 𝐺(𝑇)]

(𝛼 𝛽⁄) (15)	

	
where	𝐷& 	 is	 the	 total	 dose,	 and	G(T)	 can	be	 thought	 of	 as	 the	 fraction	of	 primary	 lesions	 that	
remain	to	interact	with	secondary	lesions	over	the	course	of	the	treatment.	
	
G	 takes	 on	 values	 from	 0	 to	 1.	 If	G	 =	 0,	 we	 have	 full	 repair	 of	 sublethal	 damage,	 there	 is	 no	
interaction	of	lesions,	and	
	

𝐵𝐸𝐷(𝑇) = 𝐷& (16)	
	
In	this	case,	the	BED	is	equal	to	the	total	physical	dose.	If	G	=	1,	we	have	no	repair	of	sublethal	
damage,	there	is	complete	interaction	and	misrepair	of	the	lesions,	and	
	

𝐵𝐸𝐷(𝑇) = 𝐷& +
𝐷&!

𝛼 𝛽⁄
(17)	

	
which	 is	 equivalent	 to	 the	 BED	 for	 a	 single	 instantaneous	 dose	 of	 radiation.	 The	 case	 with	
incomplete	repair	has	a	G	value	somewhere	between	these	two	extremes.	
	
Gustafsson	et	al.	(2013)	showed	that	the	equation	for	BED	can	be	written	very	generally	as	
	

𝐵𝐸𝐷(𝑇) = i 𝐷̇(𝑡)d𝑡
.

'
+

2
𝛼 𝛽⁄ i 𝐷̇(𝑡)[𝐷̇(𝑡)	⨂	𝑅(𝑡)]d𝑡

.

'
(18)	

	
where	the	final	term	includes	a	convolution	of	the	dose-rate	input	function	𝐷̇(𝑡)	with	the	repair	
function	𝑅(𝑡).	(Note:	Gustafsson	uses	𝑅&(𝑡)	and	I(𝑡)	where	we	use	𝐷̇(𝑡)	and	𝑅(𝑡),	respectively.)	
In	this	formulation	of	BED,	the	repair	function	is	not	limited	to	an	exponential	function,	and	can	
be	very	general.	
	
This	equation	can	also	be	written	as	
	

𝐵𝐸𝐷(𝑇) = 𝐷& +
2
𝛼 𝛽⁄

i 𝐷̇(𝑡)[𝐷̇(𝑡)	⨂	𝑅(𝑡)]d𝑡
&

'
(19)	

	
where	T	 is	 the	 total	 treatment	 time,	𝐷& 	 is	 the	 total	 physical	 dose,	 and	 the	 second	 term	of	 the	
equation	depends	on	how	much	DNA	repair	occurs	during	treatment,	which	can	be	no	repair,	full	
repair,	or	incomplete	repair,	depending	on	the	time	course	of	the	treatment.	

	 10	

	
Millar	and	Canney	(1993)	showed	that	when	the	repair	function	is	an	exponential,	as	is	the	case	
in	this	book,	the	BED	equation	can	be	written	as	
	

𝐵𝐸𝐷 = 𝐷& +
1
𝛼 𝛽⁄

[𝜓(Ξ, 𝜇)] (20)	

	
where	
	

𝜓(Ξ, 𝜇) = 2i 𝐷̇(𝑡)𝑑𝑡
&

'
i 𝐷̇(𝑤)
(

'
𝑒)*((),)d𝑤 (21)	

	
The	 symbol	 Ξ	signifies	 that	 the	 integral	 depends	 on	 the	 specifics	 of	 the	 treatment,	 that	 is,	 it	
depends	on	the	total	irradiation	protocol	including,	for	example,	the	fractional	dose,	start	time	of	
the	 fraction,	dose	 rate,	 etc.	This	 treatment	 specific	protocol	 is	described	by	 the	absorbed	dose	
rate	function,	𝐷̇(𝑡),	and	the	symbol	𝜇	is	again	the	sublethal	DNA	repair	rate	constant.	
	
Millar	and	Canney	(1993)	also	showed	that	for	fractionated	protracted	irradiation,	and	assuming	
an	exponential	repair	function,	the	psi	term	can	be	written	
	

𝜓(Ξ, 𝜇) = 2fi 𝐷/̇
(!01(!

(!

2

3$%

𝑒)*(d𝑡	 × vi 𝐷/̇
(

(!
𝑒*,d𝑤	 + f i 𝐷4̇

("01("

("

5$3)%

5$%

𝑒*,d𝑤w (22)	

	
where	N	 is	 the	 number	 of	 fractions,	 each	 starting	 at	 time	 𝑡3 	 and	 having	 duration	 𝑡3 + 𝛿𝑡3 ,	 and	
where	 𝛿𝑡3 	 is	 such	 that	 𝑡3 + 𝛿𝑡3 ≤	 𝑡30%.	 The	 final	 term	 in	 this	 equation	 represents	 the	
contributions	due	 to	 incomplete	 repair	 from	previous	 fractions	and	does	not	 contribute	 to	 the	
first	 fraction	 when	 j	 =	 1.	 This	 is	 the	 form	 of	 the	 equation	 we	 implement	 in	 our	 functional	
program.	It	handles	any	fractionated	or	protracted	dose-rate	input	function	that	can	be	written	
as	a	mathematical	 function.	With	N	=	1,	 this	equation	reduces	 to	 the	 form	used	 for	continuous	
radiation,	for	example,	as	in	brachytherapy	or	radionuclide	therapy.	Figure	2	shows	examples	of	
dose-rate	input	functions	that	can	be	implemented	in	this	equation	for	psi.	
	
For	the	case	of	a	bi-exponential	repair	function,	with	a	fast	and	a	slow	component	of	repair	(see	
Figure	3a),	there	will	be	two	psi	terms,	𝜓%and	𝜓!,	corresponding	to	the	two	repair	rate	constants	
𝜇%and	𝜇!.	In	this	case,	the	BED	equation	is	written	
	

𝐵𝐸𝐷 = 𝐷& +
1
𝛼 𝛽⁄

[a𝜓%(Ξ, 𝜇%) + b𝜓!(Ξ, 𝜇!)] (23)	

	
where	a	and	b	are	the	 fractional	contributions	of	 the	 fast	and	slow	components	of	repair,	with	
a+b=1.	This	equation	is	often	written	using	a	partition	coefficient	c	as	follows	
	

𝐵𝐸𝐷 = 𝐷& +
1
𝛼 𝛽⁄ z

𝜓%(Ξ, 𝜇%) + c𝜓!(Ξ, 𝜇!)	
1 + c { (24)	

	

	 11	

	

	 12	

The	BED	equations	 above	 are	 very	 general	 and	 can	be	used	with	 external	 beam	 radiotherapy,	
brachytherapy,	radionuclide	therapy,	or	any	combination	of	these.	As	shown	in	section	3.8,	from	
the	BED	 in	 the	 voxels,	 and	 an	 estimate	 of	 the	number	of	 clonogens	per	 voxel	N,	 the	 surviving	
clonogen	number	is	given	by	
	

𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔	𝐶𝑙𝑜𝑛𝑜𝑔𝑒𝑛𝑠 = 𝑁 ∙ exp(−𝛼 ∙ 𝐵𝐸𝐷) (25)	
	
and	the	TCP	by	
	

𝑇𝐶𝑃 = exp�−𝑁 ∙ exp(−𝛼 ∙ 𝐵𝐸𝐷)�. (26)	
	

3.3 Repopulation Model
	
Tumors	may	repopulate	(proliferate)	during	treatment	decreasing	the	BED	in	the	voxels	where	
this	occurs.	Given	an	initial	number	of	clonogenic	cells	𝑁',	if	the	effective	doubling	time	of	these	
cells	is	Teff,	then	at	time	t	there	will	have	been	t/Teff	cell	doublings	and	the	number	of	cells	as	a	
function	of	time	can	be	written	as	
	

𝑁(𝑡) = 𝑁'2(&#$$⁄ (27)	
	
and	the	fractional	increase	in	the	cell	population	with	time	is	given	by	
	

𝑁(𝑡)
𝑁'

= 2(&#$$⁄ (28)	

	
Noting	that	

2(&#$$⁄ = exp �ln2
𝑡
𝑇788

� (29)	

	
the	survival	fraction	equation	(11),	including	the	effects	of	repopulation,	can	be	written	as	
	

𝑆𝐹 = exp(−𝛼𝐷 − 𝛽𝐺𝐷!) ∙ exp �ln2
𝑡
𝑇788

� (30)	

	
and	the	BED	equation	(14)	above,	including	the	effects	of	repopulation,	can	now	be	written	as	
	

𝐵𝐸𝐷(𝑇) = 𝐷& +	
𝐷&[𝐷& ∙ 𝐺(𝑇)]

(𝛼 𝛽⁄) 	−	
ln2 ∙ 𝑇
𝛼 ∙ 𝑇788

(31)	

	
or	equivalently,	using	BED	equation	(20)	above,	as	
	

𝐵𝐸𝐷(𝑇) = 𝐷& +
1
𝛼 𝛽⁄

[𝜓(Ξ, 𝜇)] −	
ln2 ∙ 𝑇
𝛼 ∙ 𝑇788

(32)	

	
where	

	 13	

𝜓(Ξ, 𝜇) = 2i 𝐷̇(𝑡)𝑑𝑡
&

'
i 𝐷̇(𝑤)
(

'
𝑒)*((),)d𝑤 (33)	

	
The	equations	above	assume	that	Teff	is	a	constant.	Teff	will	generally	be	a	function	of	time	and	is	
given	by	the	equation	
	

𝑇788(𝑡) =
𝑇9

𝐺𝐹 ∙ (1 − 𝜙(𝑡))
(34)	

	
where	𝑇9	is	the	cell	cycle	time,	GF	is	the	growth	fraction	(the	fraction	of	cells	in	cycle),	and	𝜙(𝑡)	is	
the	cell	loss	factor.	Here	we	assume	that	𝑇9	and	GF	are	constants,	while	𝜙(𝑡)	is	a	function	of	time	
as	 described	 below.	 If	 the	 cell	 loss	𝜙(𝑡)	 is	 zero,	Teff	 becomes	 the	 potential	 doubling	 time	Tpot,	
which	is	defined	as	the	cell	cycle	time	divided	by	the	growth	fraction.	Thus,	Teff	can	be	written	as	
	

𝑇788(𝑡) =
𝑇:;<

(1 − 𝜙(𝑡))
(35)	

	
where	

𝑇:;< =
𝑇9
𝐺𝐹

(36)	

	
and	

𝜙(𝑡) = 𝜙(0)exp(−n ∙ 𝑡) (37)	
	
Here	𝜙(0)	is	the	pretreatment	cell	loss	factor	and	n	is	the	cell	loss	rate	constant.	It	is	thought	that	
cell	 loss	 decreases	 during	 treatment	 because	 of	 increased	 oxygenation	 of	 the	 tumor	 due	 to	
improved	 tissue	 perfusion	 as	 the	 treatment	 proceeds	 (Joiner	 and	 van	 der	 Kogel	 (2018).	
Therefore	
	

𝑇788(𝑡) =
𝑇:;<

(1 − 𝜙(0)exp(−n ∙ 𝑡))
(38)	

	
Since	𝑇788(𝑡)	can	be	a	function	of	time,	the	term	for	repopulation	in	the	above	BED	equations,	in	
its	most	general	form,	is	written	as	an	integral	
	

𝐵𝐸𝐷(𝑇) = 𝐷& +	
1
𝛼 𝛽⁄

[𝜓(Ξ, 𝜇)] 	−	i
ln2

𝛼 ∙ 𝑇788(𝑡)
d𝑡

&

'
(39)	

	
and	when	substituting	the	equation	for	𝑇788(𝑡)	above	we	get	
	

𝐵𝐸𝐷(𝑇) = 𝐷& +
1
𝛼 𝛽⁄

[𝜓(Ξ, 𝜇)] 	−	i
ln2 ∙ �1 − 𝜙(0)exp(−n ∙ 𝑡)�

𝛼 ∙ 𝑇:;<
d𝑡

&

'
(40)	

	
The	loss	in	BED	due	to	repopulation	is	given	by	the	final	term	of	this	equation	
	

Loss	in	BED	due	to	repopulation = i
ln2 ∙ �1 − 𝜙(0)exp(−n ∙ 𝑡)�

𝛼 ∙ 𝑇:;<
d𝑡

&

'
(41)	

	 14	

Assuming	𝑇:;<	is	constant,	we	integrate	the	above	equation	from	time	0	to	time	T.	There	are	two	
cases.	If	cell	loss	is	zero,	the	loss	in	BED	due	to	repopulation	reduces	to	
	

ln2 ∙ 𝑇
𝛼 ∙ 𝑇:;<

(42)	

	
This	is	the	familiar	case	where	if,	for	example,	when	𝛼	=	0.35	Gy-1	and	𝑇:;<	=	3.3	day,	we	get	a	loss	
in	 BED	 due	 to	 repopulation	 of	 about	 0.6	 Gy/day.	 This	 is	 the	 classic	 value	 for	 BED	 lost	 due	 to	
accelerated	repopulation	as	is	thought	to	occur	in	some	rapidly	growing	tumors,	where	it	is	often	
assumed	 that	 this	 repopulation	 begins	 after	 a	 delay	 or	 “kick-off”	 time	 of	 about	 21-28	 days.	
Equation	 (42)	 is	 referred	 to	 as	 the	 continuous	 repopulation	 model,	 with	 a	 time	 delay	 it	 is	
referred	to	as	the	discontinuous	repopulation	model.	Figure	3c	shows	this	model	where	after	a	
“kick-off”	time	of	28	days,	we	get	a	loss	in	BED	due	to	repopulation	of	0.6	Gy/day.	
	
If	cell	loss	is	not	equal	to	zero,	the	loss	in	BED	due	to	repopulation	is	given	by	(Dale	and	Jones,	
2007)	
	

ln2
𝛼 ∙ 𝑇:;<

�𝑇 −
𝜙(0)
n

(1 − exp(−n ∙ 𝑇))� (43)	

	
This	 is	 called	 the	 progressive	 model	 of	 repopulation,	 and	 it	 models	 a	 continuously	 changing	
repopulation	rate,	equal	initially	to	the	effective	doubling	time	and	rising	during	treatment	as	cell	
loss	decreases	to	approach	the	much	shorter	𝑇:;<	value	at	the	end	of	treatment.	This	progressive	
model	of	repopulation	is	shown	in	Figure	3d.	
	
The	 first	 term	of	 the	BED	equation	 (40)	 above	 is	 the	 total	physical	 absorbed	dose,	 the	 second	
term	accounts	for	incomplete	repair	during	treatment	which	will	increase	the	BED,	and	the	third	
term	accounts	 for	 clonogen	 repopulation	during	 treatment	 decreasing	 the	BED.	Thus	we	have	
one	 general	 equation	 for	 BED	 that	 is	 applicable	 to	 any	 absorbed	 dose	 rate	 pattern	 and	 can	
account	for	repopulation	as	well.	
	

3.4 Redistribution Model
	
Dividing	cells,	such	as	tumor	cells,	progress	through	the	cell	cycle,	and	the	different	phases	of	the	
cell	cycle	differ	in	their	inherent	radiosensitivities	and	in	the	shape	of	their	cell	survival	curves.	
By	contrast,	late	responding	normal	tissues	are	thought	to	divide	less	frequently,	if	at	all	in	some	
tissues	 (e.g.,	 nervous	 tissue).	 This	 difference	 between	 cycling	 tumor	 cells	 and	 noncycling	
surrounding	normal	 tissues	 is	 responsible	 for	 redistribution	 (also	 called	 reassortment)	 effects	
that	can	give	a	therapeutic	advantage	during	fractionated	or	protracted	radiotherapy.	
	
Intrinsic	radiosensitivity	is	characterized	by	the	𝛼	parameter	in	the	linear	quadratic	model,	and	
the	𝛼 𝛽⁄ 	ratio	determines	the	shape	(or	amount	of	shoulder)	of	the	cell	survival	curve	which	in	
turn	determines	 how	 sensitive	 the	 tissue	 is	 to	 the	 effects	 of	 dose	 fractionation	 or	 protraction.	
Classic	cell	survival	curves	for	the	different	phases	of	the	cell	cycle	for	Chinese	hamster	cells	are	
shown	in	Figure	3e	(Sinclair	and	Morton,	1965).	This	cell	line	was	used	in	developing	a	simple		

	 15	
	

	 16	

model	 of	 redistribution	 demonstrating	 the	 principle	 that,	 for	 fractionated	 or	 protracted	
radiotherapy,	cycling	cells	have	an	overall	 lower	surviving	 fraction	than	do	noncycling	cells.	 In	
our	model,	late	responding	normal	tissues	are	assumed	to	remain	in	G1	phase	while	cycling	cells	
in	 tumors	 are	 assumed	 to	 be	 distributed	 through	 the	 various	 phases	 of	 the	 cell	 cycle	 in	
proportion	to	the	fractional	time	spent	in	each	phase	of	the	cell	cycle	as	determined	by	cellular	
kinetics	studies.	A	G0	component	of	cells	could	be	included	as	well,	where	the	cells	are	totally	out	
of	the	cell	cycle	and	are	not	affected	by	irradiation	at	all.	The	radiosensitivity	parameters	𝛼	 for	
the	various	phases	of	the	cell	cycle	were	estimated	from	the	cell	survival	curves	in	Figure	3e.	
	
For	the	case	of	cycling	cells,	the	RandomChoice	function	in	Mathematica	was	used	to	randomly	
select	from	a	discrete	distribution	which	𝛼	parameter	to	use	with	each	fraction	of	radiation.	The	
function	RandomChoice	has	the	form	
	

RandomChoice[{𝑤%, 𝑤!, … }	®	{𝑒%, 𝑒!, … }]	 (44)	
	
and	gives	a	pseudorandom	choice	ei	weighted	by	wi.	
	
In	section	4.4	we	demonstrate	the	effects	of	redistribution	for	fractionated	dose	delivery,	where	
with	each	fraction	delivered	the	radiosensitivity	parameter	𝛼	is	randomly	selected	and	then	the	
surviving	clonogenic	cells	after	a	dose	of	radiation	is	given	by	
	

𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔𝐶𝑙𝑜𝑛𝑜𝑔𝑒𝑛𝑠 = 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝐶𝑙𝑜𝑛𝑜𝑔𝑒𝑛𝑠 ∙ exp(−𝛼 ∙ 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐵𝐸𝐷). (45)	
	
The	Mathematica	 function	Nest	 is	used	 to	 apply	 this	𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔𝐶𝑙𝑜𝑛𝑜𝑔𝑒𝑛𝑠	 function	 repeatedly	
over	the	course	of	treatment.	The	Nest	function	has	the	general	form	
	

Nest[𝑓, 𝑥, 𝑛] (46)	
	
which	applies	a	function	f	nested	n	times	to	the	initial	argument	x.	In	our	case,	this	function	takes	
the	form	
	

Nest[𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔𝐶𝑙𝑜𝑛𝑜𝑔𝑒𝑛𝑠, 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝐶𝑙𝑜𝑛𝑜𝑔𝑒𝑛𝑠, 𝑛] (47)	
	
where	 the	 SurvivingClonogens	 function	 above	 is	 applied	 to	 the	 number	 of	 initial	 clonogens,	
StartingClonogens,	and	this	is	repeated	for	n	fractions,	and	for	the	case	of	cycling	cells,	the	value	
of	𝛼	is	sampled	at	the	start	of	each	fraction	using	the	RandomChoice	function.	A	variant	of	Nest,	
called	NestList,	is	used	which	displays	all	of	the	intermediate	results	during	the	n	fractions.	
	

3.5 Reoxygenation Model
	
The	cellular	oxygen	concentration	has	long	been	known	to	modify	the	radiation	response	of	the	
tissues,	with	 hypoxic	 tissues	 being	 less	 radiosensitive	 than	well	 oxygenated	 (aerobic)	 tissues.	
This	effect	is	characterized	by	the	oxygen	enhancement	ratio	(OER),	which	is	defined	as	the	ratio	
of	the	radiation	dose	in	hypoxic	conditions	to	the	dose	in	aerobic	conditions	to	produce	the	same	
biological	effect.	Carlson	et	al.	(2006)	showed	that	the	radiosensitivity	parameters	𝛼	for	hypoxic	
(H)	and	aerobic	(A)	tissues	are	related	by	
	

	 17	

𝛼= =
𝛼>
𝑂𝐸𝑅

(48)	
	
and	that	the	𝛼 𝛽⁄ 	values	are	related	by	
	

�
𝛼
𝛽�=

= 𝑂𝐸𝑅 ∙ �
𝛼
𝛽�>

(49)	

	
These	values	can	be	incorporated	into	the	equations	developed	earlier	to	account	for	the	reduced	
radiosensitivity	𝛼	and	the	increased	𝛼 𝛽⁄ 	value	of	hypoxic	tissues.	This	can	be	done	on	a	voxel-
by-voxel	basis	to	model	the	effects	of	hypoxia	on	treatment	outcome.	
	
The	 tissues	 may	 reoxygenate	 during	 treatment.	 Dale	 and	 Jones	 (2007)	 have	 modeled	 this	 by	
assuming	that	reoxygenation	occurs	at	an	exponential	rate.	Using	this	assumption,	the	OER	as	a	
function	of	time	can	be	expressed	as	
	

𝑂𝐸𝑅(𝑡) = (𝑂𝐸𝑅' − 1)𝑒)?(+ 1 (50)	
	
where	OER'	is	the	OER	at	time	0,	and	z	is	the	reoxygenation	time	constant.	See	Figure	3f.	
	
We	use	the	Mathematica	Fold	function	to	model	reoxygenation	during	fractionated	radiotherapy.	
Fold	is	an	extension	of	the	Nest	function,	and	takes	a	second	argument	at	each	step	of	the	process	
from	the	successive	elements	of	a	list.	Fold	has	the	general	form	
	

Fold[𝑓, 𝑥, {𝑎, 𝑏, … }] (51)	
	
which	 is	 similar	 to	 the	 Nest	 function	 in	 the	 previous	 section,	 but	 in	 addition	 to	 applying	 a	
function	 f	 nested	 n	 times	 to	 the	 initial	 argument	 x,	 a	 second	 argument	 is	 folded	 into	 the	
calculation	at	each	step,	which	for	our	application	will	be	the	time	in	days	of	the	dose	fraction.	
For	our	case,	the	Fold	function	takes	the	form	
	

Fold[𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔𝐶𝑙𝑜𝑛𝑜𝑔𝑒𝑛𝑠, 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝐶𝑙𝑜𝑛𝑜𝑔𝑒𝑛𝑠, {𝑡%, 𝑡!, … , 𝑡"}] (52)	
	
which	is	similar	to	the	Nest	function	above,	but	now	the	time	of	the	dose	fraction	is	folded	into	
the	 calculation,	 allowing	 us	 to	 account	 for	 the	 change	 in	 OER	 due	 to	 reoxygenation	 through	
equation	 (50),	 which	 will	 affect	 the	 number	 of	 surviving	 clonogens	 over	 the	 course	 of	
fractionation	through	equations	(48)	and	(49).	This	methodology	is	implemented	in	Section	4.5.	
A	variant	of	Fold,	called	FoldList,	is	used	which	displays	all	the	intermediate	results	during	the	n	
fractions.	

3.6 Radiosensitivity Model
	
The	fifth	R	of	radiobiology,	intrinsic	radiosensitivity,	is	extremely	important	in	determining	the	
radiation	 response	 of	 the	 tissues	 (Steel	 et	 al.	 1989).	 In	 our	 model,	 radiosensitivity	 is	
characterized	by	the	𝛼	parameter	of	the	linear	quadratic	equation.	It	is	through	the	𝛼	parameter	
that	the	BED	in	the	voxels	in	converted	into	clonogen	surviving	fraction	and	ultimately	into	the	
voxel	 TCP.	 We	 show	 TCP	 results	 for	 individual	 patients	 with	 different	 values	 of	 the	
radiosensitivity	 parameter	 𝛼	 and	 we	 also	 show	 the	 population	 average	 TCP	 results,	

	 18	

demonstrating	the	principle	that	dose	response	curves	for	individual	patients	are	much	steeper	
than	those	for	a	population	of	patients.	
	

3.7 Heterogeneity Model
	
Biological	 processes	 always	 have	 some	 inherent	 variability	 or	 heterogeneity,	 and	 all	 of	 the	
parameters	 used	 in	 the	 radiobiological	 models	 described	 above	 can	 be	 sampled	 from	
distributions.	Biological	variability	arises	from	a	multitude	of	effects	acting	independently	of	one	
another,	 and	 these	 effects	 can	 be	 additive	 or	 multiplicative,	 leading	 to	 normal	 or	 lognormal	
distributions,	respectively	(Limpert	et	al.	2001).	
	
In	Mathematica,	we	sample	 from	a	normal	distribution	with	mean	𝜇	and	standard	deviation	𝜎	
using	the	composite	function	
	

RandomVariate NormalDistribution[𝜇, 𝜎]¡. (53)	
	
Similarly,	we	sample	from	a	lognormal	distribution	using	the	composite	function	
	

RandomVariate LogNormalDistribution[𝜇, 𝜎]¡. (54)	
	
In	 this	 case,	 LogNormalDistribution[𝜇, 𝜎]	 represents	 a	 lognormal	 distribution	 derived	 from	 a	
normal	 distribution	 with	 mean	 𝜇	 and	 standard	 deviation	 𝜎.	 To	 sample	 from	 a	 lognormal	
distribution	with	mean	m	and	standard	deviation	s	we	use	the	transformations	
	

𝜇 = ln �
𝑚!

√𝑠! +𝑚!
� (55)	

	
	

𝜎 = ¤ln �
𝑠!

𝑚! + 1� (56)	

	
These	formulas	give	the	mean	𝜇	and	standard	deviation	𝜎	for	the	normal	distribution	from	which	
the	lognormal	distribution	with	mean	m	and	standard	deviation	s	is	derived	(Wicklin,	2014).	
	
Figures	3g	and	3h	show	normal	and	lognormal	distributions	for	Tpot	with	a	mean	of	5	days	and	a	
standard	deviation	of	1.5	days.	
	

3.8 Tumor Control Probability Model
	
Having	obtained	the	BED	on	a	voxel-by-voxel	basis,	the	Poisson	model	of	tumor	control	is	used	to	
convert	 voxel	 BED	 into	 voxel	 TCP.	 This	 model	 has	 its	 shortcomings,	 and	 has	 been	 shown	 to	
underestimate	 the	 TCP	 when	 repopulation	 is	 involved,	 being	 most	 severe	 for	 rapidly	
proliferating	tumors.	It	is	a	widely	used	model,	however,	and	for	most	clinical	situations	provides	
a	reasonable	approximation	of	TCP	and	is	adequate	for	the	purposes	of	this	book.	
	

	 19	

From	the	defining	BED	equation	
	

𝐵𝐸𝐷 = −
ln 𝑆𝐹
𝛼

(57)	

	
the	cell	surviving	fraction	is	
	

𝑆𝐹 = exp(−𝛼 ∙ 𝐵𝐸𝐷). (58)	
	
If	the	initial	clonogen	number	is	N,	the	number	of	surviving	clonogens	is	given	by	
	

𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔	𝐶𝑙𝑜𝑛𝑜𝑔𝑒𝑛𝑠 = 𝑁 ∙ 𝑆𝐹 (59)	
or	
	

𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔	𝐶𝑙𝑜𝑛𝑜𝑔𝑒𝑛𝑠 = 𝑁 ∙ exp(−𝛼 ∙ 𝐵𝐸𝐷). (60)	
	
From	 the	 surviving	 clonogen	 number,	 using	 the	 Poisson	 model	 of	 tumor	 control,	 the	 tumor	
control	probability	(TCP)	is	given	by	
	

𝑇𝐶𝑃 = exp(−𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔	𝐶𝑙𝑜𝑛𝑜𝑔𝑒𝑛𝑠) (61)	
	
or	

𝑇𝐶𝑃 = exp�−𝑁 ∙ exp(−𝛼 ∙ 𝐵𝐸𝐷)�. (62)	
	
Since	we	are	interested	in	TCP	in	the	individual	voxels,	and	since	everything	in	our	models	can	
vary	voxel-to-voxel,	in	Section	4.7	we	will	write	this	TCP	equation	as	
	

𝑉𝑜𝑥𝑒𝑙𝑇𝐶𝑃 = exp(−𝑉𝑜𝑥𝑒𝑙𝐶𝑙𝑜𝑛𝑜𝑔𝑒𝑛𝑠 ∙ exp(−𝑉𝑜𝑥𝑒𝑙𝐴𝑙𝑝ℎ𝑎 ∙ 𝑉𝑜𝑥𝑒𝑙𝐵𝐸𝐷)) (63)	
	
where	each	of	the	terms	in	this	equation	are	lists	of	values	in	the	individual	voxels.	
	
From	 the	TCPs	 in	 the	 individual	 voxels,	 the	TCP	 in	 the	 tumor	 as	 a	whole	 can	 be	 found	 as	 the	
product	of	the	voxel	TCPs.	In	developing	this	relationship,	the	tumor	is	assumed	to	consist	of	a	
certain	 number	 of	 noninteracting	 and	 independent	 clonogens,	 cell	 killings	 are	 considered	
uncorrelated	events,	and	the	tumor	is	controlled	if	all	clonogens	are	killed.	The	tumor	is	divided	
into	a	number	of	tumorlets	(or	subvolumes)	each	of	which	is	small	enough	that	the	dose	can	be	
considered	to	be	uniform	within	 it.	These	are	 the	 individual	voxels	 in	our	model.	These	voxels	
are	 then	 assumed	 to	 respond	 independently	 to	 irradiation.	 The	 response	 of	 a	 given	 voxel	 (of	
partial	 volume	 𝑣5 ,	 receiving	 dose	 𝑑5)	 can	 be	 inferred	 from	 that	 of	 the	 entire	 tumor	
homogeneously	irradiated	to	that	same	dose,	through	the	following	relationship,	derived	directly	
from	Poisson	statistics	(Goitein,	2008).	
	

𝑇𝐶𝑃(𝑑5 , 𝑣5) = [𝑇𝐶𝑃(𝑑5 , 𝑉)]
@"
A . (64)	

	
For	example,	if	there	are	100	equal	sized	voxels	in	the	total	volume,	the	product	of	the	TCPs	of	
the	 100	 voxels	 gives	 the	TCP	 in	 the	whole	 tumor,	 and	 each	 individual	 voxel	 has	 a	TCP	 that	 is	
scaled	according	to	the	above	equation.	For	non-uniform	irradiation,	it	follows	that	the	response	

	 20	

of	 the	 tumor	 as	 a	 whole	 is	 given	 by	 the	 product	 of	 the	 individual	 voxel	 TCPs	 through	 the	
relationship	
	

𝑇𝐶𝑃 = 𝑇𝐶𝑃(𝑑%, 𝑣%) ∙ 𝑇𝐶𝑃(𝑑!, 𝑣!) ∙ 𝑇𝐶𝑃(𝑑B, 𝑣B)… 	= 	«𝑇𝐶𝑃(𝑑5 , 𝑣5)
C

5$%

(65)	

	
where	the	doses	𝑑5 	are	the	individual	voxel	BED	values.	
	
In	our	voxel-based	radiobiological	modeling,	we	first	calculate	the	BEDs	in	each	voxel,	which	are	
stored	in	a	list	called	VoxelBEDs	
	

𝑉𝑜𝑥𝑒𝑙𝐵𝐸𝐷𝑠 = {𝐵𝐸𝐷1, 𝐵𝐸𝐷2, 𝐵𝐸𝐷3,… } (66)	
	
and	this	list	is	then	converted	into	a	list	of	TCPs	called	VoxelTCPs	
	

𝑉𝑜𝑥𝑒𝑙𝑇𝐶𝑃𝑠 = {𝑇𝐶𝑃1, 𝑇𝐶𝑃2, 𝑇𝐶𝑃3,… }. (67)	
	
Finally,	 the	tumor	TCP	as	a	whole	 is	 found	by	multiplying	all	 the	voxel	TCPs	together	which	 in	
functional	form	is	given	by	
	

𝑇𝑢𝑚𝑜𝑟𝑇𝐶𝑃 = Apply[Times, 𝑉𝑜𝑥𝑒𝑙𝑇𝐶𝑃𝑠]. (68)	

	 21	

4. Functional Implementation
	
	
Now	we	will	describe	how	we	implement	the	functions	described	in	Chapter	3	into	Mathematica	
code.	To	perform	radiobiological	modeling	on	a	 voxel-by-voxel	basis,	we	 start	with	 a	patient’s	
radiotherapy	treatment	plan	and	its	associated	DICOM-RT	Dose	file	and	DICOM-RT	Structure	Set	
files.	From	these	two	files,	the	dose	in	the	individual	voxels	as	well	as	the	region	of	interest	(ROI)	
that	these	voxels	belong	to	can	be	obtained.	With	the	voxel	dose	information	and	with	knowledge	
of	the	type	of	dose	delivery	(i.e.,	external	beam,	brachytherapy,	or	radionuclide	therapy)	and	the	
specific	time	course	(i.e.,	detailed	fractionation	or	protraction	pattern)	of	the	treatment,	a	dose-
rate	input	function	can	be	generated	for	each	voxel.	Using	methods	described	in	Section	3.2,	the	
dose-rate	 input	 function	can	be	convolved	with	a	repair	 function	 to	get	 the	BED	 in	each	voxel.	
Other	 functions,	 including	 those	 for	 the	remaining	4	Rs	of	 radiobiology,	can	be	 included	 in	 the	
model	as	well.	The	DICOM-RT	Dose	file	can	be	edited	replacing	the	physical	dose	in	each	voxel	
with	the	biological	dose,	and	the	BED	can	then	be	displayed	on	the	treatment	planning	computer	
in	place	of	physical	dose.	Finally,	with	an	estimate	of	clonogen	number	per	voxel,	voxel	BEDs	can	
be	converted	into	voxel	TCPs,	and	the	TCP	in	the	tumor	as	a	whole	can	be	computed.	
	
	

	
Flow	of	Information	

	

4.1. Input and Output
	
To	obtain	information	in	the	voxels,	the	DICOM-RT	Dose	file	and	Structure	Set	file	were	accessed	
using	 the	Python	programming	environment	with	 the	Pydicom	package	of	 functions	 (Pydicom	
version	0.9.7).	Pydicom	(Mason	et	al.	2024)	is	a	Python	package	for	reading	from	and	writing	to	
DICOM	 files.	 Python	 and	 Pydicom	were	 used	 imperatively	 for	 input	 and	 output	 tasks,	 such	 as	
reading	 and	 editing	 DICOM	 files,	 as	 well	 as	 for	 processing	 the	 information	 in	 these	 files	 to	
prepare	 it	 for	 use	 in	 the	 radiobiological	 modeling.	 For	 the	 actual	 voxel-based	 radiobiological	
modeling,	Mathematica	was	used	in	a	functional	manner.	
	
The	dose	in	each	voxel	is	contained	in	the	Pixel	Data	attribute	of	the	DICOM-RT	Dose	file,	which	
was	accessed	using	 the	Pydicom	pixel_array	property.	The	contour	 information	 is	 contained	 in	
the	Contour	Data	attribute	of	the	DICOM-RT	Structure	Set	file.	In	the	Python/Pydicom	program	
shown	 in	Appendix	E,	 the	DICOM-RT	Dose	 file	and	 the	DICOM-RT	Structure	Set	 file	were	used	
together	 to	 determine	 which	 contour	 or	 ROI	 a	 particular	 voxel	 belongs	 to.	 This	 program	

	 22	

determines	which	voxels	in	the	dose	array	lie	within	the	boundary	of	the	ROI	of	interest,	in	our	
case	the	tumor	ROI.	For	each	slice	of	voxels	along	the	z-axis	of	the	imaging	dataset,	the	ROIs	are	
represented	as	closed	polygons,	and	 the	vertex	coordinates	of	 these	polygons	are	contained	 in	
the	 Contour	 Data	 attribute.	 The	Matplotlib	 path	 module,	 with	 its	 contains_point	 function,	 was	
used	 to	 test	 if	 the	 voxel	 coordinates	 lie	 within	 the	 ROI	 polygon.	 Those	 voxels	within	 the	 ROI	
boundary	are	marked	by	setting	their	dose	value	equal	to	zero.		
	
Figure	2	on	page	11	shows	various	dose-rate	input	functions	that	can	be	generated	on	a	voxel-
by-voxel	 basis	 as	 demonstrated	 in	 the	 next	 section.	 Figure	 3	 on	 page	 15	 shows	 radiation	
response	modifying	functions	that	are	used	in	this	book,	and	these	functions	can	also	vary	voxel-
to-voxel.	The	dose-rate	 input	 functions	give	physical	dose	 in	the	voxels,	 the	radiation	response	
modifying	functions	are	used	to	transform	physical	dose	into	biological	dose.	
	
The	biological	dose	(BED)	in	the	voxels	can	then	be	written	back	into	the	DICOM-RT	Dose	file	in	
place	of	 the	physical	dose.	This	was	done	by	exporting	 the	BED	results	 from	Mathematica	as	a	
flattened	one-dimensional	 list	of	values	(Appendix	K),	and	then	 importing	this	 list	 into	Python,	
reshaping	 the	 list	 into	 the	 appropriate	 array	 dimension	 using	 the	 reshape	 function	 from	 the	
NumPy	scientific	computing	library,	and	finally	writing	these	BED	values	to	the	dose	array	using	
Pydicom	(Appendix	L).	Dose	values	are	 stored	 in	 the	dose	array	as	 integer	data	 types	and	 the	
DICOM-RT	Dose	Grid	Scaling	attribute	 is	used	 to	 convert	 these	 integer	values	 to	 floating-point	
numbers	 representing	 dose.	 Care	 must	 be	 taken	 in	 converting	 the	 BED	 output	 values	 from	
Mathematica	 to	 the	 appropriate	 integer	 values	 in	 the	 DICOM-RT	 Dose	 file,	 and	 the	 Dose	 Grid	
Scaling	attribute	may	have	to	be	edited	if	the	integer	representations	of	the	BED	values	are	larger	
than	the	maximum	integer	value	allowed.	
	

4.2 Repair
	
As	shown	in	Section	3.2,	a	dose-rate	input	function	can	be	convolved	with	a	repair	function	to	get	
BED,	and	 this	 can	be	done	on	a	voxel-by-voxel	basis.	There	are	 two	general	 types	of	 radiation	
dose	delivery	we	will	consider.	The	first	is	where	discrete	pulses	of	radiation	are	given,	such	as	in	
fractionated	 external	 beam	 radiation,	 Gamma	 Knife	 radiosurgery	 shots,	 or	 HDR	 pulses.	 The	
second	 type	 of	 dose	 delivery	 is	 one	 of	 continuous	 protracted	 radiation	 treatment,	 such	 as	 in	
brachytherapy	 or	 radionuclide	 therapy.	We	will	 demonstrate	 the	 calculation	 of	 BED	 for	 these	
two	 types	of	dose	delivery	using	examples	 from	Gamma	Knife	 radiosurgery	 (Fig.	2c)	and	 from	
iodine-125	brachytherapy	(Fig.	2g),	respectively.	Similar	methods	can	be	applied	to	other	types	
of	dose	delivery,	including	the	other	examples	shown	in	Figure	2.	
	
For	the	Gamma	Knife	radiosurgery	case,	we	demonstrate	the	process	using	a	small	dataset	that	is	
11x10x9	 in	voxel	dimensions	 for	990	 total	voxels.	One	slice	of	 this	dataset,	with	 the	dose-rate	
input	 functions	 in	 each	 voxel,	 along	with	 the	 calculated	BEDs,	 is	 shown	 in	 Figure	 4.	 The	 dose	
delivery	 for	this	case	consists	of	six	Gamma	Knife	shots,	and	each	shot	has	a	specific	dose-rate	
and	 treatment	 time.	 The	 shot	 times	will	 be	 the	 same	 in	 all	 the	 voxels	 and	 is	 known	 from	 the	
treatment	plan,	but	the	shot	dose-rates	will	vary	throughout	the	voxels.	We	find	the	dose-rates	
for	 the	 individual	 shots	 using	 the	 Python	 program	 shown	 in	 Appendix	 H.	 For	 each	 of	 the	 six	
Gamma	 Knife	 shots,	 individual	 DICOM-RT	 Dose	 files	 were	 generated	 by	 zeroing	 out	 the	 dose	
contributions	from	the	other	shots,	so	that	we	have	voxel-by-voxel	dose	information	for	each	of		
	

	 23	

	
	
the	six	individual	shots.	Knowing	the	times	of	each	shot,	the	individual	shot	dose	information	can	
be	 converted	 into	 shot	 dose-rate	 information.	 The	 program	 in	 Appendix	 H	 forms	 a	 list	 of	 the	
Gamma	Knife	shot	times	and	shot	dose-rates	for	all	the	voxels	in	the	dose	array	and	writes	this	
list	to	a	text	file.	In	this	example,	there	are	six	shots,	each	with	an	associated	time	and	dose-rate.	

	 24	

The	complete	list	therefore	has	dimension	11x10x9x6x2.	We	import	this	multi-dimensional	list	
into	Mathematica,	and	we	name	it	VoxelDoseRates.	
	
Below	we	display	a	portion	of	the	VoxelDoseRates	list	containing	the	shot	times	and	dose-rates	
for	 the	 nine	 voxels	 in	 slice	 nine	 and	 row	 six	 of	 the	 dataset.	 This	 is	 a	 9x6x2	 list	 of	 values,	
containing	 information	 for	 the	 nine	 voxels,	 each	with	 six	 shots	 described	 by	 two	 values	 (shot	
time	and	dose-rate).	The	Mathematica	Part	function	is	used	to	display	the	information	we	want.	
The	 Part	 function	 has	 the	 form	 shown	 below,	 here	 it	 specifies	 that	 we	 want	 to	 display	 the	
information	in	slice	nine	and	row	six	of	 the	dataset.	The	semicolon	at	the	end	of	 the	command	
suppresses	the	output.	
	

	
	
A	more	convenient	shorthand	method	of	applying	the	Part	function	is	shown	below,	along	with	
the	output.	
	

	
	
The	shot	times,	in	minutes,	are	the	first	entries	(9.03,	7.78,	8.24,	4.90,	4.02,	1.88)	and	the	dose-
rates,	in	Gy/min,	are	the	second	entries	of	each	pair	of	values.	We	convert	the	time	and	dose-rate	
information	in	the	VoxelDoseRates	list	into	voxel	doses	with	the	following	functional	equation.	
	

	
	
The	resulting	list	is	called	VoxelDoses	and	contains	the	doses	in	the	990	voxels	of	the	dataset.	In	
this	 functional	equation,	the	{4}	specifies	that	we	multiple	the	values	(times	and	dose-rates)	at	
level	4	of	the	list	structure,	and	the	{3}	specifies	that	we	add	the	resulting	values	at	level	3	of	the	
list	structure.	This	VoxelDoses	equation	is	an	example	of	the	concise	and	powerful	programming	
techniques	available	 in	 functional	 languages.	The	entire	VoxelDoseRates	 list	 is	passed	 into	 this	
equation	 as	 an	 argument	 and	 a	 new	 list	 called	 VoxelDoses	 is	 produced	 containing	 the	 dose	
values,	and	all	 in	just	one	line	of	code.	The	dose	results	(in	Gy)	for	the	nine	voxels	in	slice	nine	
and	row	six	of	the	dataset	are	shown	below.	
	

	
	
We	 convert	 the	 shot	 times	 and	 dose-rates	 above	 into	 graphical	 form	 using	 the	Mathematica	
RectangleChart	 function	 which,	 for	 each	 voxel,	 makes	 a	 rectangle	 chart	 with	 bars	 of	 width	
proportional	to	the	shot	times	and	height	equal	to	the	shot	dose-rates	(in	Gy/min).	We	include	

	 25	

the	total	voxel	dose	in	this	display	as	well.	
	

	
	
This	 is	a	graphical	representation	of	the	shot	times	and	dose-rates	of	the	six	shots	for	the	nine	
voxels	in	slice	nine	and	row	six	of	the	dataset.	Similar	figures	are	shown	in	Figure	4	(in	the	sixth	
row	 from	 the	 bottom)	 along	 with	 the	 calculated	 voxel	 BED	 values.	 Note	 that	 for	 this	 slice	 of	
voxels,	shot	two	contributes	little	to	the	dose.	
	
For	use	in	the	equations	developed	in	Section	3.2,	we	need	to	convert	the	above	information	into	
functional	form	in	an	input	dose-rate	function.	We	use	the	Mathematica	UnitStep	function	to	do	
this.	The	cumulative	 times,	 in	minutes,	 for	 the	shots	shown	above	are	 t1=0,	 t2=9.03,	 t3=16.81,	
t4=25.05,	 t5=29.95,	 t6=33.97,	 and	 t7=	 35.85.	 For	 each	 shot	 we	 form	 a	 unit	 step	 function	 as	
follows.	
	

	
	
For	 shot	 one,	 we	 call	 this	 function	 UnitStepShot1T,	 and	 similarly	 for	 the	 other	 shots.	 The	 T	
specifies	that	this	is	a	function	of	the	variable	t,	because	we	will	form	a	similar	set	of	functions	of	
the	 variable	 w,	 that	 we	 will	 specify	 as	 UnitStepShot1W,	 and	 so	 on.	 We	 need	 to	 write	 these	
functions	both	in	terms	of	the	variables	t	and	w	because	the	convolution	equation	(22)	we	use	to	
calculate	BED	includes	dose-rate	functions	of	both	these	variables.	
	
Each	of	 the	above	unit	 step	 functions	are	of	unit	height.	We	need	 to	scale	 these	step	 functions	
appropriately	 to	 correspond	 with	 the	 dose-rates	 of	 the	 shots	 in	 each	 voxel.	 We	 do	 this	 by	
mapping	the	above	UnitStepShot	functions	over	the	VoxelDoseRates	list	which	contains	the	dose-
rates	of	all	of	the	shots	in	all	of	the	voxels.	This	is	shown	in	the	functional	equations	below.	For	
example,	 Shot1VoxelDoseRateT	 is	 formed	 by	 mapping	 the	 UnitStepShot1T	 function	 over	 the	
VoxelDoseRates	 list	 and	 multiplying	 this	 function	 by	 the	 appropriate	 entry	 in	 the	
VoxelDoseRates	 list.	 The	 Mathematica	 Part	 function	 is	 used	 to	 pick	 out	 the	 appropriate	
components	 from	 the	 list.	 The	VoxelDoseRates	 list	 has	 dimensions	 11x10x9x6x2	 and	 the	 Part	
specifier	[[All,	All,	All,	1,	2]]	indicates	that	for	all	11	slices,	all	10	rows,	and	all	9	columns	of	the	

	 26	

dataset,	we	want	 the	 first	 component	 of	 6	 (shot	1),	 and	 the	 second	 component	 of	 2	 (the	dose	
rate),	and	similarly	for	the	remaining	five	shots.	
	

	
	
The	individual	shots	are	added	together	to	form	the	voxel-by-voxel	dose-rate	input	functions,	in	
a	list	named	VoxelDoseRateInputT.	
	

	
	
We	do	a	similar	process	with	w	in	place	of	t,	which	we	name	VoxelDoseRateInputW.	
	

	
	
Below	is	shown	the	resulting	dose-rate	input	function,	VoxelDoseRateInputT,	in	the	first	voxel	of	
slice	nine	and	row	six	of	the	dataset.	
	

	
	
Finally,	shown	below	is	a	list	of	the	VoxelDoseRateInputT	functions	in	graphical	form	for	the	nine	
voxels	in	slice	nine,	row	six	of	the	dataset.	Dose-rate	in	Gy/min	is	on	the	ordinate	and	time	is	in	
minutes	on	the	abscissa	of	these	graphs.	
	

	
	
The	input	dose-rate	functions	are	now	in	a	form	that	can	be	used	in	equation	(22)	to	compute	the	
voxel	BEDs.	
	

	 27	

For	 the	 I-125	 case,	 we	 form	 the	 dose-rate	 input	 function	 VoxelDoseRateIodineT	 as	 follows,	
where	59.4	is	the	half-life	of	I-125	in	days.	
	

	
	
VoxelDoseRateIodineT	 and	 InitialDoseRateIodine	 are	 lists	 containing	 information	 for	 all	 the	
voxels	of	a	treatment	plan.	We	form	a	similar	dose-rate	input	function	VoxelDoseRateIodineW	of	
the	variable	w,	as	before.	
	
Knowing	the	dose	in	each	of	the	voxels	from	the	treatment	plan,	we	can	solve	for	the	initial	dose-
rate,	 InitialDoseRateIodine,	by	 integrating	 the	above	equation	 to	 infinity	 (or	a	 sufficiently	 long	
time)	and	setting	the	result	equal	to	the	voxel	dose.	For	example,	for	a	voxel	dose	of	144	Gy,	the	
initial	 dose	 rate	 is	 1.68	Gy/day.	 Below	 is	 a	 list	 of	 I-125	 dose-rate	 input	 functions	 in	 graphical	
form	for	the	nine	voxels	as	before,	with	the	last	voxel	receiving	144	Gy	and	the	others	receiving	
higher	doses.	An	example	of	this	type	of	analysis	is	shown	in	Appendix	S.	
	

	
	
	
The	other	dose-rate	input	functions	shown	in	Figure	2	can	be	formed	using	similar	methods,	and	
the	 magnitudes	 of	 these	 functions	 can	 be	 scaled	 appropriately	 for	 the	 individual	 voxels,	 as	
demonstrated	for	the	cases	above.	Essentially	any	dose-rate	input	function,	whether	discrete	or	
continuous,	can	be	modeled	in	this	way,	and	on	a	voxel-by-voxel	basis.	
	
We	now	perform	a	convolution	of	the	input	dose-rate	functions	with	a	repair	function	to	get	BED	
using	the	methods	of	Section	3.2.	We	use	BED	equation	(20)	along	with	psi	equation	(22).	For	the	
Gamma	 Knife	 radiosurgery	 example	 above,	 we	 get	 voxel-by-voxel	 psi	 values	 in	 a	 list	 called	
VoxelPsi	as	shown.	
	

	 28	

	
	
The	 Parallelize	 command	 distributes	 the	 computation	 among	 the	 available	 kernels	 and	
processors	on	the	computer	being	used.	VoxelMu	is	the	repair	rate	constant	𝜇,	which	could	vary	
voxel-to-voxel,	but	in	our	examples	is	constant	throughout	the	voxels.	
	
For	the	I-125	case,	we	only	need	the	first	part	of	psi	equation	(22).	
	

	
	
Here,	 t1	 is	 the	 total	 time	of	 the	 integration,	 for	a	permanent	 implant	 twenty	half-lives	 is	more	
than	sufficient.	
	
The	above	implementations	of	the	VoxelPsi	equations	(22)	are	the	most	mathematically	correct	
ways	to	write	the	equations,	with	the	input	dose-rate	functions	written	in	terms	of	both	t	and	w.	
It	was	found,	however,	that	by	writing	the	input	dose-rate	functions	just	in	terms	of	the	variable	
t,	the	computation	is	much	faster	and	the	results	are	identical	for	the	discrete	pulse	types	of	dose	
delivery	(e.g.,	 the	Gamma	Knife	case	or	conventional	 fractionation)	and	nearly	 identical	 for	the	
continuous	types	of	dose	delivery	(e.g.,	 the	 I-125	case).	This	 is	 the	 implementation	we	actually	
used	in	most	of	this	book,	and	this	is	discussed	further	in	Chapter	5	and	Appendix	S	and	T.	Using	
this	 implementation	 of	 the	 convolution	 equations	 for	 the	 Gamma	 Knife	 radiosurgery	 case,	
VoxelPsi	is	written	as	follows.	
	

	 29	

	
	
The	function	ParallelMap	is	used	to	map,	in	a	parallel	manner,	the	convolution	equations	in	(22)	
over	the	list	VoxelDoseRateInputT	which	contain	all	the	dose-rate	input	functions	as	a	function	of	
t	 in	 all	 the	 voxels,	 to	 produce	 the	 psi	 values	 on	 a	 voxel-by-voxel	 basis.	 The	 dose-rate	 input	
functions	are	not	written	as	a	function	of	w	in	this	formulation.	In	this	equation,	each	element	of	
the	VoxelDoseRateInputT	list	is	substituted	in	place	of	the	#	value	during	the	mapping	and	a	new	
list	called	VoxelPsi	is	produced	giving	the	psi	values	in	each	voxel.	
	
Similarly,	for	the	iodine-125	case,	we	use	the	form	of	the	equation	below	to	compute	VoxelPsi.	
	

	
	
The	voxel	BED	equation	(20),	containing	a	list	of	BEDs	in	all	the	voxels	is	written	as	follows.	
	

	
	
VoxelDoses	 is	 a	 list	 of	 the	 voxel	 doses,	 VoxelPsi	 is	 a	 list	 of	 the	 voxel	 psi	 values,	 and	
VoxelAlphaBeta	is	a	list	of	the	𝛼 𝛽⁄ 	values	in	the	voxels.	VoxelBeds	is	thus	seen	to	be	made	up	of	
two	 terms,	 the	 first	 term	 is	 the	 absorbed	 dose	 and	 the	 second	 term	 accounts	 for	 incomplete	
repair	during	treatment	and	is	modified	by	the	𝛼 𝛽⁄ 	value.	
	
When	using	a	biexponential	repair	 function,	a	second	 list	of	psi	values	called	VoxelPsi2	 for	 the	
second	 repair	 rate	 constant	𝜇!,	 is	 included,	 as	 in	 equation	 (23),	 and	 the	VoxelBED	equation	 is	
now	written	as	shown	here,	with	a+b=1.	
	

	

	 30	

	
For	the	Gamma	Knife	example,	the	BED	results	(in	Gy)	for	the	nine	voxels	in	slice	nine	and	row	
six	of	 the	dataset	are	shown	below.	These	results	were	calculated	using	a	biexponential	 repair	
function	with	short	and	 long	repair	half-times	of	0.19	h	and	2.16	h,	 respectively	 (Figure	3a),	a	
partition	coefficient	c	=	0.98	(see	Eq.	(24)),	and	an	𝛼 𝛽⁄ 	value	of	10	Gy.	
	

	
	
The	results	are	shown	in	figure	4	and	Appendix	J.	The	methodology	developed	above	was	applied	
to	a	BED	analysis	of	 a	 tumor	 treated	with	 two	different	Gamma	Knife	 radiosurgery	plans.	The	
dataset	 used	 was	 of	 size	 35x34x34	 voxels.	 One	 plan	 was	 a	 high-efficiency	 plan	 with	 eight	
isocenters	(shots)	and	a	treatment	time	of	33.9	minutes,	the	other	was	a	low-efficiency	plan	with	
thirteen	isocenters	and	a	treatment	time	of	79.3	minutes.	In	calculating	the	tumor	voxel	BEDs,	a	
biexponential	repair	function	was	used,	with	short	and	long	repair	half-times	of	0.19	h	and	2.16	
h,	respectively,	partition	coefficient	c=0.98	(giving	a=0.5051,	b=0.4949),	and	the	𝛼 𝛽⁄ 	value	was	
10	Gy.	For	the	high-efficiency	plan,	the	effect	on	tumor	BED	of	treating	at	half	the	activity	(and	
twice	the	treatment	time)	was	also	investigated.	The	results	for	this	case	are	discussed	in	Section	
5.1.	
	

4.3 Repopulation
	
Repopulation	in	the	voxels	decreases	the	BED	in	those	voxels	where	this	occurs.	The	loss	in	BED	
due	 to	 repopulation	 is	 given	 by	 Equation	 (41).	 The	 integrand	 of	 this	 equation	 is	 written	 in	
Mathematica	as	follows,	with	all	of	the	components	of	this	equation	(VoxelTpot,	VoxelAlpha,	etc.)	
being	lists	of	values	in	the	individual	voxels.	
	

	
	
We	integrate	this	function	to	time	T	with	the	following	equation,	which	gives	the	loss	of	BED	in	
the	voxels	due	to	repopulation	over	this	time.	
	

	
	
The	voxel	BED	equation,	 including	repopulation,	 is	now	written	as	shown	below,	and	again	all	
the	terms	in	this	equation	are	lists	of	values.	
	

	
	
The	BED	in	the	voxels	is	now	made	up	of	three	terms:	the	physical	dose,	the	contribution	to	BED	
due	to	unrepaired	damage,	and	a	negative	term	due	to	clonogen	repopulation	during	treatment.	
	
Figure	 3c	 shows	 the	 voxel	 repopulation	 rate	 for	 the	 discontinuous	 repopulation	model	which	
was	 discussed	 in	 Section	 3.3.,	 where	 with	 VoxelTpot	 =	 3.3	 days,	 VoxelAlpha	 =	 0.35	 Gy-1,	 and	
VoxelInitialCellLoss	=	0,	the	loss	in	BED	is	0.6	Gy/day	after	a	28	day	delay.	Figure	3d	shows	the	

	 31	

voxel	 repopulation	 rate	 for	 the	 progressive	 model	 of	 repopulation,	 with	 VoxelTpot	 and	
VoxelAlpha	as	above,	but	now	with	VoxelInitialCellLoss	=	0.9	and	VoxelCellLossRate	=	0.05	d-1.	
As	 cell	 loss	goes	 to	 zero,	 the	effective	doubling	 time	approaches	 the	Tpot	value,	 and	 the	voxel	
repopulation	rate	increases	to	a	value	of	0.6	Gy/day	loss	in	BED.	
	
The	 effect	 of	 repopulation	 on	 the	 TCD-50	 (50%	 tumor	 control	 dose)	 for	 a	 single	 voxel	 was	
investigated	 for	a	60	Gy	conventional	 fractionation	 treatment	 in	2	Gy	 fractions,	using	both	 the	
progressive	and	discontinuous	models	of	repopulation.	For	the	progressive	repopulation	model,	
VoxelAlpha	=	0.35	Gy-1,	VoxelInitialCellLoss	=	0.9,	VoxelCellLossRate	=	0.03	d-1,	and	four	different	
VoxelTpot	values	(2.5,	5,	7.5,	and	10	days)	were	used.	For	the	discontinuous	repopulation	model,	
VoxelAlpha	=	0.35	Gy-1,	VoxelTpot	=	3.3	days,	and	there	was	a	28	day	delay	before	repopulation	
begins.	
	
We	also	 investigated	 the	effect	on	 tumor	TCP	of	various	sized	aggressive	spots,	 regions	where	
the	 tumor	 was	 repopulating,	 as	 a	 function	 of	 VoxelTpot.	We	 used	 a	 hypothetical	 case	 of	 100	
voxels,	 for	 a	 60	 Gy	 conventional	 fractionation	 treatment	 in	 2	 Gy	 fractions,	 and	 examined	 the	
effect	on	tumor	TCP	when	10%,	25%,	or	50%	of	the	voxels	were	repopulating	during	treatment.	
The	progressive	repopulation	model,	with	VoxelAlpha	=	0.35	Gy-1,	VoxelInitialCellLoss	=	0.9,	and	
VoxelCellLossRate	=	0.05	d-1	was	used,	and	the	effect	on	tumor	TCP	was	plotted	as	a	function	of	
VoxelTpot.	A	starting	number	of	clonogens	in	the	voxels	was	chosen	to	produce	a	baseline	value	
of	80%	tumor	TCP	for	large	VoxelTpot	values	(and	little	repopulation).	The	results	are	discussed	
in	Section	5.2.	
	

4.4 Redistribution
	
We	developed	a	simple	model	of	redistribution	 in	the	voxels	using	the	cell	cycle	phase	specific	
survival	 curves	 for	 Chinese	 hamster	 cells	 shown	 in	 Figure	 3e.	 From	 these	 survival	 curves,	
VoxelAlpha	values	were	estimated	to	be	0.75	Gy-1,	0.35	Gy-1,	0.25	Gy-1,	and	0.10	Gy-1,	 for	M/G2,	
G1,	 ES,	 and	 LS	 cells,	 respectively.	 From	 cellular	 kinetics	 studies,	 values	 for	 times	 spent	 in	 the	
various	phases	of	 the	cell	cycle	are	TC	=	11	h,	TM	=	1	h,	TS	=	6	h,	TG1	=	1h,	TG2	=	3	h.	 (Hall	and	
Giaccia,	2019).	From	these	data,	the	fraction	of	time	that	the	cells	spend	in	each	phase	of	the	cell	
cycle	was	calculated	to	be	0.3637,	0.0909,	0.2727,	and	0.2727	for	M/G2,	G1,	ES,	and	LS	phases,	
respectively,	 and	where	 S	phase	 cells	were	 assumed	 to	be	 equally	divided	between	ES	 and	LS	
phases.	As	we	have	mentioned	before	a	G0	component	could	also	be	included	for	cells	totally	out	
of	cycle	and	unaffected	by	irradiation.	
	
We	 used	 a	 hypothetical	 case	 of	 a	 tumor	 containing	 100	 voxels,	 for	 a	 60	 Gy	 conventional	
fractionation	treatment	in	2	Gy	fractions,	with	VoxelAlphaBeta	=	10	Gy,	giving	a	VoxelBED	value	
of	72	Gy.	For	G1	cells	with	VoxelAlpha	=	0.35	Gy-1,	a	BED	of	72	Gy	can	control	about	60	billion	
clonogens	at	the	50%	TCP	level,	or	about	600	million	clonogens	per	voxel.	
	
Equation	 (45)	 is	 written	 in	 Mathematica	 with	 the	 following	 equation,	 where	 for	 a	 starting	
number	of	clonogens,	VoxelClonogens,	it	gives	the	surviving	clonogens	in	the	voxels	after	a	single	
fraction	of	radiation	with	BED	value	VoxelFractionalBED.	
	

	

	 32	

	
As	 in	Equations	 (46)	and	(47),	we	apply	 the	Mathematica	Nest	 function	 to	apply	 this	equation	
repeatedly	over	the	30	fractions.	We	show	the	results	for	a	single	voxel	starting	with	600	million	
clonogens,	and	we	use	the	NestList	function	which	displays	all	of	the	intermediate	values,	rather	
than	the	Nest	 function	which	gives	 just	 the	final	value.	The	results	shown	are	 for	G1	cells	with	
VoxelAlpha	=	0.35	Gy-1,	and	for	this	case	VoxelFractionalBED	=	2.4	Gy.	
	

	
	
The	final	value	in	the	list	is	0.0068	surviving	clonogens,	which	gives	a	voxel	TCP	value	of	99.32%.	
For	100	voxels,	the	total	tumor	TCP	is	0.9932100	or	approximately	50%.	Similar	calculations	were	
done	for	the	other	phases	of	the	cell	cycle,	using	the	phase-specific	VoxelAlpha	values	above.	For	
voxels	containing	cycling	cells,	with	each	fraction,	we	randomly	sampled	for	VoxelAlpha	from	a	
discrete	 distribution,	 assuming	 the	 cells	 are	 distributed	 in	 each	 phase	 of	 the	 cell	 cycle	 in	
proportion	to	the	times	spent	in	these	phases.	We	use	the	Mathematica	RandomChoice	function	
shown	in	equation	(44)	as	implemented	here.	
	

	
	
This	function	picks	a	random	VoxelAlpha	value,	using	the	discrete	distribution	shown,	for	all	the	
voxels	in	a	10x10x1	dataset	represented	in	a	list	made	with	the	Table	function.	The	:=	symbol	is	a	
delayed	assignment	operator,	which	causes	the	VoxelRandomChoice	function	to	be	reevaluated	
each	time	it	is	called,	and	this	assures	that	with	each	fraction	a	new	set	of	VoxelAlpha	values	are	
selected.	This	is	used	in	the	equation	below	to	randomly	sample	the	VoxelAlpha	values	with	each	
fraction	delivered.	
	

	
	
We	show	the	results	again	for	a	single	voxel	starting	with	600	million	cells,	and	we	show	all	the	
intermediate	results	again	with	the	NestList	function.	
	

	
	
The	 final	 value	 in	 the	 list	 is	 0.000698	 surviving	 clonogens,	 which	 gives	 a	 voxel	 TCP	 value	 of	
99.93%,	which	is	higher	than	the	99.32%	voxel	TCP	value	above	for	G1	cells.	The	total	tumor	TCP	
in	this	case	is	0.9993100	=	93.2%	vs.	the	50%	value	for	the	noncycling	G1	cells.	Thus	the	cycling	

	 33	

cells	 are	 seen	 to	be	more	 radiosensitive	giving	a	 favorable	 therapeutic	 ratio	 relative	 to	 the	G1	
cells.	Further	results	are	shown	in	Section	5.3.	
	

4.5 Reoxygenation
	
Using	the	equations	developed	in	Section	3.5.,	we	model	the	effects	of	hypoxia,	and	subsequent	
reoxygenation,	 on	 tumor	 control	 in	 the	 voxels.	 We	 again	 use	 a	 hypothetical	 case	 of	 a	 60	 Gy	
conventional	 fractionation	 treatment	 in	 2	 Gy	 fractions,	 with	 weekend	 breaks,	 for	 a	 tumor	
containing	100	voxels.	For	this	treatment,	with	VoxelAlphaBeta	=	10	Gy,	 the	VoxelBED	value	 is	
72	Gy	and	we	saw	above	that	this	BED,	with	VoxelAlpha	=	0.35	Gy-1,	can	control	about	60	billion	
clonogens	 at	 the	 50%	 TCP	 level,	 or	 about	 600	million	 clonogens	 per	 voxel.	 This	 is	 our	 fully-
oxygenated	 baseline	 case,	 and	 we	 explore	 the	 effects	 that	 various	 levels	 of	 hypoxia	 and	
reoxygenation	in	the	voxels	have	on	tumor	TCP.	
	
For	 fractionated	 dose	 delivery,	 we	 begin	 with	 the	Mathematica	 equation	 below	 that	 we	 used	
previously.	For	a	starting	number	of	clonogens	equal	to	VoxelClonogens,	this	functional	equation	
gives	 the	 surviving	 clonogens	 in	 each	 voxel	 after	 a	 single	 dose	 of	 radiation	 with	 value	
VoxelFractionalBED.	
	

	
	
In	hypoxic	conditions,	we	modify	VoxelAlpha	and	VoxelFractionalBED	using	equations	(48)	and	
(49),	 which	 depend	 on	 the	 OER	 values	 in	 the	 voxels.	 We	 use	 equation	 (50),	 implemented	 in	
Mathematica	 as	 shown	below,	 to	 account	 for	 reoxygenation	 in	 the	 voxels.	 This	 equation	 gives	
OER	 as	 a	 function	 of	 time,	 starting	 at	 an	 initial	 OER	 value	 of	 VoxelInitialOER	 and	 decreasing	
exponentially	with	rate	constant	VoxelReoxygenationRate	to	a	final	value	of	OER	=	1.	
	

	
	
Combining	these	equations	together,	we	get	the	functional	equation	below,	which	is	a	function	of	
starting	 clonogen	 number	 VoxelClonogens	 and	 time	 t.	 Once	 again,	 all	 the	 components	 of	 this	
equation	are	lists	of	values	in	the	voxels.	
	

	
	
We	 use	 the	 Mathematica	 Fold	 function	 to	 implement	 this	 equation	 over	 the	 course	 of	 the	
treatment.	 Below	 are	 the	 results	 for	 a	 single	 voxel,	 with	 starting	 clonogen	 number	 equal	 to	
600,000,000,	and	the	treatment	time	in	days	given	by	the	list	of	integers.	
	

	 34	

	
	
We	start	with	100	tumor	voxels	with	VoxelAlpha	=	0.35	Gy-1.	In	four	voxels	(4%	of	total)	we	set	
the	 initial	 OER,	 VoxelInitialOER	 =	 2.5,	 which	 gives	 an	 initial	 VoxelAlpha	 =	 0.14	 Gy-1	 using	
equation	(48).	Over	40	days,	these	voxels	reoxygenate	(VoxelReoxygenationRate	=	0.05	d-1)	and	
on	day	40,	VoxelAlpha	=	0.29	Gy-1.	We	also	explore	the	effects	on	tumor	TCP	of	various	levels	of	
hypoxic	voxels	(1%,	4%,	16%,	and	100%).	And	for	4%	hypoxic	voxels,	we	also	explore	the	effects	
of	various	reoxygenation	rates	on	TCP	of	the	tumor.	The	results	are	shown	in	Section	5.4.	
	

4.6 Radiosensitivity and Heterogeneity
	
As	discussed	in	Section	3.6,	intrinsic	radiosensitivity	is	characterized	by	the	α	parameter	in	the	
linear	quadratic	model.	The	α	parameters	in	the	voxels	are	contained	in	a	list	called	VoxelAlpha,	
or	in	the	case	where	α	 is	constant	throughout	the	voxels,	VoxelAlpha	can	be	a	scalar.	The	voxel	
TCPs	are	obtained	with	equation	(63)	shown	here.	
	

	
	
VoxelClonogens	is	the	number	of	clonogens	per	voxel,	and	this	too	can	be	a	 list	 if	 the	clonogen	
number	 varies	 voxel-to-voxel	 or	 it	 can	 be	 a	 scalar	 if	 this	 number	 is	 constant	 throughout	 the	
voxels.	 For	 conventional	 fractionation	 in	 2	 Gy	 fractions	 for	 a	 tumor	 with	 𝛼 𝛽⁄ 	 =	 10	 Gy,	 this	
equation	can	be	written	as	follows,	where	x	is	absorbed	dose.	
	

	
	
For	this	treatment,	60	Gy	absorbed	dose	gives	a	BED	of	72	Gy,	and	as	we	saw	before,	with	an	α	
value	of	0.35	Gy-1	this	BED	can	control	about	60	billion	clonogens	at	the	50%	TCP	level.	These	60	
billion	clonogens	could	be	in	one	large	voxel	or	distributed	among	many	smaller	voxels.	Since	we	
will	be	exploring	the	effect	that	heterogeneity	in	the	α	parameter	throughout	the	voxels	has	on	
the	total	tumor	TCP,	and	to	obtain	good	statistical	results,	we	will	use	a	rather	large	dataset	of	
voxels	for	this	part	of	our	investigation.	We	introduce	a	40x40x40	dataset	of	voxels	with	64,000	
total	voxels	with	the	following	equation.	
	

	
	
For	a	tumor	with	60	billion	clonogens,	this	will	give	937,500	clonogens	per	voxel	and	therefore	
VoxelClonogens	=	937,500.	
	

	 35	

To	get	the	total	tumor	TCP,	we	multiply	all	the	voxel	TCPs	together	as	shown	below,	where	the	
{0,2}	 specifies	 the	 correct	 level	 for	 the	 multiplication	 operation	 in	 the	 multi-dimensional	 list	
structure.	
	

	
	
Alternatively,	 the	 VoxelTCP	multi-dimensional	 list	 structure	 can	 first	 be	 flattened	 into	 a	 one-
dimensional	list	and	the	terms	then	multiplied	together	directly	as	shown	here.	
	

	
	

	
	
The	final	result,	TumorTCP,	is	a	function	of	x,	which	is	absorbed	dose,	and	we	can	plot	TumorTCP	
as	 a	 function	of	dose,	which	we	do	 for	VoxelAlpha	equal	 to	0.25	Gy-1,	 0.35	Gy-1,	 and	0.45	Gy-1.	
These	results	are	for	the	case	of	VoxelAlpha	values	held	constant	throughout	the	voxels.	We	also	
explore	 the	effect	of	 variation	 in	 the	VoxelAlpha	values	 throughout	 the	voxels.	Using	a	normal	
distribution	 with	 α	 =	 0.35	 Gy-1	 (VoxelAlphaMu=0.35),	 and	 standard	 deviation	 =	 0.035	 Gy-1	
(VoxelAlphaSD=0.035),	we	form	a	40x40x40	dataset	of	voxels	with	a	distribution	of	α	values.	
	

	
	
Similarly,	we	can	use	a	lognormal	distribution	with	a	mean	α	of	0.35	Gy-1	and	standard	deviation	
of	0.035	Gy-1,	by	applying	the	transformations	of	equations	(55)	and	(56).	These	transformations	
give	a	value	for	VoxelAlphaMu	of	-1.055	and	for	VoxelAlphaSD	of	0.09975.	
	

	
	
We	also	model	 a	population	average	 curve	by	generating	 individual	 curves	with	α	 parameters	
ranging	from	0.29	Gy-1	to	0.43	Gy-1	(0.290,	0.300,	0.314,	0.328,	0.345,	0.360,	0.378,	0.395,	0.413,	
0.430)	 and	 then	 taking	 the	 mean	 of	 the	 resulting	 equations	 (i.e.,	 adding	 them	 together	 and	
dividing	by	ten).	The	results	are	shown	in	Section	5.5.	
	

4.7 Clonogen Number and Dose Heterogeneity
	
We	 investigated	 the	 effect	 of	 total	 clonogen	 number	 and	 clonogen	 number	 heterogeneity	 on	
tumor	TCP	starting	with	the	following	equation	for	TCP	in	a	voxel.	
	

	
	
For	conventional	fractionation	in	2	Gy	fractions	for	a	tumor	with	𝛼 𝛽⁄ 	=	10	Gy,	this	equation	can	

	 36	

be	written	as	follows,	where	x	is	absorbed	dose.	
	

	
	
For	100	identical	voxels,	the	tumor	TCP	is	obtained	with	the	following	equation.	
	

	
	
The	effect	on	TCP	of	voxel	clonogen	number	heterogeneity	can	be	modeled	using	either	a	normal	
or	lognormal	distribution	as	described	in	Section	3.7.	For	a	tumor	made	up	of	100	voxels,	a	list	of	
voxel	 TCPs	 can	 be	 generated	 using	 the	 following	 equation	 where	 the	 mean	 voxel	 clonogen	
number	is	VoxelClonogensMu	and	the	standard	deviation	is	VoxelClonogensSD.	
	

	
	
The	individual	voxel	TCPs	can	be	multiplied	together	as	before	to	get	the	tumor	TCP.	
	

	
	
We	plot	TumorTCP	versus	dose	for	total	tumor	clonogen	values	of	60	million,	60	billion,	and	60	
trillion,	and	we	discuss	the	effect	of	heterogeneity	on	these	results	in	Section	5.6.	
	
We	also	explored	heterogeneity	in	dose	in	various	volumes	of	a	tumor.	We	used	a	hypothetical	
situation	with	 100	 voxels	 and	we	decreased	 the	 dose	 in	 various	 fractions	 of	 these	 voxels.	 For	
conventional	fractionation	in	2	Gy	fractions	for	an	individual	with	VoxelAlpha	=	0.35	Gy-1	we	can	
control	 about	 60	 billion	 clonogens	 at	 the	 50%	 TCP	 level,	 or	 about	 600	million	 clonogens	 per	
voxel	in	this	case.	
	
For	example,	for	a	20%	volume	dose	deficit	with	VoxelClonogens	=	600,000,000	and	VoxelAlpha	
=	0.35	Gy-1,	we	used	the	following	equation.	
	

	
	
That	is,	we	keep	80	voxels	at	a	baseline	value	of	BED	72	Gy,	and	we	vary	the	dose	in	20	of	the	
voxels.	For	dose	deficits	of	0.1-20%	less	 than	the	60	Gy	 full	dose,	we	calculated	how	much	the	
TCP	was	reduced	from	the	baseline	of	50%	TCP.	
	
As	we	will	 see	 in	 Section	 5.5,	 TCP	 curves	 for	 individual	 patients	 are	 quite	 steep,	with	 a	 g50	 of	
about	8.	For	a	population	of	patients,	the	population	average	TCP	curve	has	a	g50	of	about	2.	We	
performed	 a	 similar	 analysis	 of	 the	 reduction	 in	 tumor	 TCP	 for	 various	 underdoses	 of	 tumor	
volume	for	a	population	rather	than	an	individual	by	using	the	population	average	TCP	curve.		
	

	 37	

4.8 Tumor Control Probability
	
In	Section	5.7	we	show	the	results	for	a	hypothetical	case	of	multiple	effects	on	tumor	TCP.	We	
combined	many	of	the	effects	modeled	in	previous	sections	into	a	hypothetical	 investigation	of	
TCP	in	a	tumor	with	100	voxels.	We	again	used	a	conventional	fractionation	case	of	60	Gy	given	
in	2	Gy	 fractions	 for	 a	 tumor	with	𝛼 𝛽⁄ 	 =	10	Gy.	This	 gives	a	BED	of	72	Gy.	With	600,000,000	
clonogens	per	voxel	and	with	α	=	0.35	Gy-1	the	TCP	per	voxel	is	0.993	giving	a	total	TCP	for	the	
tumor	of	0.993100	≈	50%.	This	is	our	starting	baseline	TCP	value.	We	then	add	variation	to	the	α	
value	and	add	hypoxia	and	subsequent	reoxygenation	to	4%	of	the	voxels,	and	add	proliferation	
to	the	voxels	on	the	edges	of	the	tumor.	Finally,	we	add	a	10%	dose	deficit	to	3%	of	the	voxels.	
And	we	 add	 variation	 (from	 normal	 or	 lognormal	 distributions)	 to	most	 of	 these	 values.	 The	
results	are	shown	in	Figure	12	of	Section	5.7.	
	
	
	
	
	

	 38	

5. Functional Results
	
	
The	results	obtained	for	the	convolutions	used	in	the	calculations	of	BED	were	checked	against	
analytical	formulations.	In	Gustafsson	(2013)	these	analytic	formulations	are	given	by	
	

𝐵𝐸𝐷 = 𝐷& +
1
𝛼 𝛽⁄

[𝜓(Ξ, 𝜇)] 	

	
where	for	discrete	pulse	cases	like	the	Gamma	Knife	case	or	conventional	fractionation	y		takes	
the	following	form		

	
where	for	the	ith	fraction,	di	is	the	absorbed	dose	delivered	at	a	constant	dose	rate,	ti	is	the	
fraction	duration,	and	a	fraction	starts	at	time	ti	and	ends	at	time	ti	+	ti.	
	
For	a	single	fraction	given	at	an	exponentially	decaying	absorbed	dose	rate	(e.g.,	I-125),	the	BED	
is	given	by		
	

𝐵𝐸𝐷(𝑇) = 𝐷& +	
𝐷&[𝐷& ∙ 𝐺(𝑇)]

(𝛼 𝛽⁄) 	

where		

	
	

Here	we	can	see	that	
	

y	 = 	𝐷&[𝐷& ∙ 𝐺(𝑇)]	
	
As	we	have	discussed	in	Section	4.2,	there	are	two	ways	to	write	the	convolution	integrals	to	
calculate	y.	One	form	uses	the	full	integration	with	the	dose-rate	input	functions	written	in	terms	
of	both	w	and	t,	whereas	the	other	form	just	writes	the	dose-rate	input	function	in	terms	of	t.		
	
For	the	discrete	pulse	cases,	writing	the	convolution	integral	just	in	terms	of	dose-rate	input	
functions	in	t	gives	identical	results	as	to	when	they	are	written	in	terms	of	both	w	and	t	and	the	
calculation	is	significantly	faster.	For	the	exponentially	decaying	absorbed	dose	rate	case	
(brachytherapy	seed	implants	or	radionuclide	therapy),	the	results	are	nearly	identical	but	there	
is	a	slight	discrepancy.	To	review,	for	the	discrete	pulse	type	irradiation	where	the	dose-rate	is	
constant	during	the	fractions,	for	a	three	shot	(or	three	fraction)	case,	we	write	the	y	equation	as	

	 39	

follows	and	call	it	VoxelPsiT.	The	dose-rate	input	function	is	only	written	as	a	function	of	t	and	is	
called	VoxelDoseRateInputT.	This	is	mapped	over	the	convolution	integral.	
	

	
This	is	the	same	as	writing	the	equation	in	the	following	way,	although	this	form	of	the	equation	
is	not	parallelizable	like	with	the	ParallelMap	function	above.	
	

	
	
As	we	have	noted,	these	forms	of	the	convolutions	work	accurately	for	discrete	constant	pulse-
rate	treatments	(e.g.,	Gamma	Knife,	conventional	fractionation,	HDR,	LDR,	PDR	treatments).		
	
For	the	Gamma	Knife	case	the	VoxelPsiT	form	of	the	equation	gives,	for	slice	nine,	row	six	of	the	
voxels	
	

	

	 40	

Whereas	the	VoxelPsiW	form	of	the	equation	gives	the	exact	same	results,	which	translates	into	
identical	BEDs.	
	

	
	
So	when	the	dose-rate	is	constant	over	the	fractions	(or	shots	in	Gamma	Knife	terminology),	
VoxelPsiT	gives	the	same	results	as	VoxelPsiW	and	is	much	faster.	It	is	only	when	the	dose-rate	
input	functions	vary	with	time	as,	for	example,	in	radioactive	seed	implants	or	radionuclide	
therapy	that	for	exact	results	you	need	integration	in	terms	of	dose-rate	functions	written	both	
in	terms	of	w	and	t	as	below	which	we	call	VoxelPsiW.	
	

	
	

When	the	dose-rate	varies	with	time,	as	in	radionuclide	therapy,	it	makes	a	slight	difference	
which	form	of	the	equation	is	used.	As	shown	in	Appendix	S,	for	VoxelIodinePsiT	we	get	

	

	
whereas	for	VoxelIodinePsiW	we	get	
	

	

	 41	

which	makes	a	slight	difference	in	the	BED	of	148.842	Gy	vs.	the	correct	value	of	148.845	Gy.	
This	is	further	discussed	in	Appendices	S	and	T.	
	

5.1. Repair
	
The	 dose-rate	 input	 functions	 shown	 in	 Figure	 2	 were	 all	 implemented	 with	 the	 methods	
described	in	Section	3.2,	and	these	functions	were	convolved	with	repair	functions	such	as	those	
shown	in	Figures	3a	and	3b	to	obtain	the	BEDs	for	each	of	the	cases.	The	BED	values	obtained	
agree	with	 those	obtained	with	 the	analytical	methods	described	above.	 Some	of	 these	 results	
are	shown	in	this	chapter	and	in	the	appendices.	Figure	4	shows	one	slice	of	the	dataset	for	the	
Gamma	Knife	radiosurgery	case	discussed	in	Section	4.2,	showing	the	dose-rate	input	functions	
in	each	voxel	along	with	 the	computed	BED	 in	 the	voxels.	The	complete	Mathematica	 code	 for	
this	case	is	shown	in	Appendix	J.		
	
We	analyzed	another	Gamma	Knife	case,	this	time	from	a	35x34x34	dataset	shown	in	Figure	5.	
There	were	two	cases,	one	was	for	a	high	efficiency	(eight	shot)	Gamma	Knife	case	and	one	for	a	
low	efficiency	(thirteen	shot)	case.	The	high	efficiency	case	had	a	total	time	of	33.9	minutes	while	
the	 low	efficiency	case	was	79.3	minutes.	 In	calculating	 the	 tumor	voxel	BEDs,	a	biexponential	
repair	function	was	used,	with	short	and	long	repair	half-times	of	0.19	h	and	2.16	h,	respectively,	
partition	 coefficient	 c=0.98	 (giving	 a=0.5051,	 b=0.4949),	 and	 the	 𝛼 𝛽⁄ 	 value	 was	 10	 Gy.	 The	
prescription	dose	was	18	Gy	to	the	50%	isodose	line.	One	of	the	purposes	of	this	exercise	was	to	
go	through	the	complete	process	of	determining	which	voxels	lied	within	the	contours	(Appendix	
E),	creating	a	list	of	shot	times	and	shot	dose-rates	in	each	voxel	(Appendix	H),	importing	that	list	
into	Mathematica	(Appendix	I),	processing	the	data	to	calculate	the	voxel	BEDs	as	in	Appendix	J,	
exporting	the	results	out	of	Mathematica	(Appendix	K),	and	finally	converting	the	original	DICOM	
dose	 file	 to	 a	 DICOM	 BED	 file	 (Appendix	 L)	 to	 display	 the	 results	 on	 the	 treatment	 planning	
computer.	
	
The	original	DVH	is	shown	in	Figure	5a	for	the	high	efficiency	and	low	efficiency	plans,	while	the	
BED	DVHs	are	shown	in	Figure	5b.	Because	of	the	short	repair	half-time	component,	the	longer	
low	efficiency	case	the	BED	gets	shifted	to	the	left	relative	to	the	high	efficiency	case.	Millar	et	al.	
(2015)	show	similar	results	for	a	13	shot	case	relative	to	a	3	shot	case	
	
Finally,	we	explored	the	loss	in	BED	for	the	high	efficiency	case	when	the	Co-60	activity	was	half	
its	previous	value,	and	the	treatment	time	therefore	twice	as	long.	As	shown	in	Figure	5c,	we	see	
a	 decrease	 in	BED	of	 about	 10%	at	 the	 lower	 activity	 and	 longer	 treatment	 time	due	 to	more	
repair	with	the	shorter	repair	half-time.	Kann	et	al.	(2016)	show	about	a	12%	decrease	in	BED	
for	 an	 85	 Gy	 trigeminal	 neuralgia	 case	 at	 half	 the	 Co-60	 activity,	 although	 they	 use	 slightly	
different	DNA	repair	half-times	and	an	𝛼 𝛽⁄ 	of	2	Gy.	From	this	analysis	it	can	be	seen	that	the	BED	
decreases	about	2%	per	year	over	the	lifetime	of	the	Co-60	source.	
	
	
	

	 42	
	

	 43	

5.2 Repopulation
	
Figure	6a	shows,	for	an	individual	voxel,	the	TCD-50	plotted	against	treatment	duration	for	the	
progressive	 and	 discontinuous	 repopulation	 models	 developed	 in	 Section	 3.3.	 For	 the	
progressive	repopulation	model,	results	are	shown	for	Tpot	values	of	2.5,	5,	7.5,	and	10	days,	the	
shorter	 the	 Tpot	 value,	 the	 faster	 the	 repopulation.	 For	 the	 discontinuous	 repopulation	model,	
Figure	3c	shows	the	voxel	repopulation	rate	for	this	model	which	was	discussed	in	Section	3.3,			
	

	

	 44	

	
where	with	VoxelTpot	=	3.3	days,	VoxelAlpha	=	0.35	Gy-1,	and	VoxelInitialCellLoss	=	0,	the	loss	in	
BED	 is	 0.6	 Gy/day	 after	 a	 28	 day	 delay,	 which	 is	 a	 well-known	 case	 with	 accelerated	
repopulation.	
	
Figure	 6b	 shows	 TCP	 as	 a	 function	 of	 Tpot	 for	 various	 volumes	 of	 aggressive	 spots	 (where	
repopulation	 is	occurring)	starting	from	a	baseline	value	of	80%	TCP	for	 large	Tpot	values	(and	
little	 repopulation).	 Below	 a	 Tpot	 of	 about	 15	 days,	 the	 effect	 of	 an	 aggressive	 spot	 on	 TCP	
becomes	substantial.	Similar	results	are	shown	in	Wang	and	Allen	(2005).	
	

5.3 Redistribution
	
In	 Figure	 7	 are	 results	 for	 the	 redistribution	model	 developed	 in	 Section	 3.4.	 The	 TCP	 of	 the	
tumor	is	plotted	as	a	function	of	dose	for	the	cases	where	the	voxels	contain	cells	exclusively	in	
each	of	the	various	phases	of	the	cell	cycle.	The	case	with	the	cells	of	the	voxels	all	in	G1	phase	
(with	α	=	0.35	Gy-1)	gives	the	baseline	value	of	50%	TCP	at	60	Gy	physical	dose.	The	case	where	
the	cell	cycle	phase	of	the	individual	voxels	is	chosen	from	a	distribution	is	shown	in	the	dashed	
red	curve.	
	
	

	
	
We	can	see	 that	 the	cycling	cells	have	a	 therapeutic	advantage	relative	 to	cells	 in	G1	phase,	so	
that	 presumably	 cycling	 tumor	 cells	would	 be	more	 sensitive	 than	 surrounding	 normal	 tissue	
that	 is	 largely	 in	 G1	 phase,	 or	 even	 out	 of	 cycle	 in	 G0.	 It	 has	 been	 noted	 in	 Perez	 and	 Brady	

	 45	

(Wazer	et	al.	2009)	that	the	difference	in	sensitivity	between	cells	 in	M/G2	phase	and	those	in	
late	S	phase	is	greater	than	that	between	well	oxygenated	and	hypoxic	tissues,	which	we	can	see	
by		comparing	Figure	7	to	Figure	9a.		
	

5.4 Reoxygenation
	
Figure	8a	 shows	100	 tumor	voxels	 on	 the	 first	 day	of	 treatment	with	 four	of	 the	 voxels	being	
hypoxic	(4%	hypoxia)	and	having	an	𝛼= 	value	of	0.14	Gy-1	and	it	also	shows	the	voxels	on	day	40	
of	treatment	where	these	hypoxic	voxels	have	partially	reoxygenated	as	described	in	Section	3.5,		
	

	

	 46	

where	 they	 now	 have	 a	𝛼= 	value	 of	 0.29	 Gy-1.	 Figure	 8b	 shows,	 for	 the	 case	 of	 a	 4%	 hypoxic	
fraction,	 the	 effect	 on	 TCP	 of	 reoxygenation	 with	 rate	 constant	 z	 =	 0.05	 d-1.	 Figure	 9a	
demonstrates	the	effect	of	hypoxic	fraction	(1%	-	100%	hypoxic	voxels)	on	TCP	for	conventional	
fractionation	 in	2	Gy	 fractions	with	weekend	breaks.	We	can	see	how	even	1%	hypoxic	voxels	
can	severely	effect	TCP.	Figure	9b	shows,	for	a	4%	hypoxic	fraction,	the	effect	of	reoxygenation	
rate	on	TCP.	
	
	

	
	

	 47	

5.5 Radiosensitivity and Heterogeneity
	
Figure	10a	demonstrates	the	effect	on	TCP	of	intrinsic	radiosensitivity,	which	is	characterized	by	
the	α	coefficient	in	the	linear	quadratic	model.	Shown	are	TCP	curves	using	α	values	of	0.25	Gy-1,	
0.35	Gy-1,	and	0.45	Gy-1.	For	a	mean	α	value	of	0.35	Gy-1	and	standard	deviation	of	0.035	Gy-1,	the	
effect	of	sampling	α	from	a	normal	distribution	and	a	lognormal	distribution	are	also	shown.		
	

	
	
The	lognormal	distribution	is	skewed	toward	the	right	in	terms	of	α	values	and	so	the	TCP	curve	
is	shifted	further	to	the	left	than	for	the	normal	distribution	case.	Figure	10b	shows	TCP	curves	

	 48	

for	 individual	 patients	 with	 α	 values	 ranging	 from	 0.29	 -	 0.43	 Gy-1,	 and	 it	 also	 shows	 the	
population	average	of	all	of	these	curves	in	black.	Individuals	vary	quite	a	lot	in	radiosensitivity	
and	the	 individual	curves	are	quite	steep	(g50	=	about	8)	but	when	averaged	over	a	population	
the	average	𝛾50	is	about	2.	
	

5.6 Clonogen Number and Dose Heterogeneity
	
Figure	11a	shows	the	effect	of	clonogen	number	on	TCP	for	conventional	 fractionation	 in	2	Gy	
fractions	with	α	=	0.35	Gy-1.	The	baseline	curve	of	50%	TCP	at	60	Gy	physical	dose	(72	Gy	BED)	
for	60	billion	clonogens	is	shown	in	red.	TCP	curves	for	60	million	and	60	trillion	clonogens	are	
also	shown.	The	clonogen	number	has	to	change	by	quite	a	bit	for	it	to	have	significant	influence	
on	TCP,	and	clonogen	heterogeneity	about	a	mean	doesn’t	have	too	much	of	an	effect	on	the	TCP.	
For	α	=	0.35	Gy-1	a	factor	increase	of	1000	clonogens	is	controlled	by	about	20	Gy	BED.	
	

!"($%&'()	+,&)-%.-	/,	01(,(2-,.	0(,')(11-3)
a

	=	BED	
	
Figure	 11b	 shows	 the	 effect	 on	 TCP	 of	 underdose	 of	 a	 portion	 of	 the	 tumor	 for	 an	 individual	
patient	with	an	α	=	0.35	Gy-1.	The	g50	is	about	8	for	these	individuals	which	is	reflected	in	a	large	
change	in	TCP	for	an	underdose.		
	
Figure	11c	 shows	 the	effects	on	TCP	on	an	underdose	 for	 a	population	average	value	of	g50	 of	
about	2.	This	is	more	consistent	with	the	often	quoted	value	of	not	more	than	10%	underdose	to	
not	more	than	10%	of	the	tumor	volume,	should	not	reduce	the	TCP	by	as	much	as	10%	(Goitein	
et	al.	1995,	Tome	and	Fowler,	2000).	

	 49	

	
	
	

	 50	

5.7 Tumor Control Probability
	
We	combined	many	of	the	effects	modeled	in	previous	sections	into	a	hypothetical	investigation	
of	 TCP	 in	 a	 tumor	with	 100	 voxels.	We	 again	 used	 a	 conventional	 fractionation	 case	 of	 60	Gy	
given	 in	 2	 Gy	 fractions	 for	 a	 tumor	 with	 𝛼 𝛽⁄ 	 =	 10	 Gy.	 This	 gives	 a	 BED	 of	 72	 Gy.	 With	
600,000,000	clonogens	per	voxel	and	with	α	=	0.35	Gy-1	the	TCP	per	voxel	is	0.993	giving	a	total	
TCP	for	the	tumor	of	0.993100	≈	50%.	This	is	our	baseline	value.	We	first	add	variation	to	α	(using	
a	 normal	 distribution	 with	 standard	 deviation	 of	 0.015	 Gy-1)	 which	 gives	 variation	 to	 the	
individual	voxel	TCP	values	about	the	mean	value	of	0.993,	which	is	shown	in	the	red	voxels.	We	
then	 add	 hypoxia	 and	 subsequent	 reoxygenation	 to	 4%	 of	 the	 voxels	 shown	 in	 the	 light	 blue	
voxels	 (reoxygenation	 rate	 z	 =	 0.2	 d-1	 sampled	 from	 a	 normal	 distribution	 with	 standard	
deviation	 of	 0.02	 d-1).	 We	 next	 add	 proliferation	 in	 the	 green	 voxels	 using	 the	 progressive	
repopulation	 model	 (Tpot	 =	 10	 days	 sampled	 from	 a	 lognormal	 distribution	 with	 standard	
deviation	of	1.5	days;	cell	loss	rate	constant	𝜈	=	0.06	d-1	sampled	from	a	normal	distribution	with	
standard	deviation	of	0.01	d-1;	and	a	pretreatment	cell	loss	factor	of	0.88	sampled	from	a	normal	
distribution	with	standard	deviation	of	0.02).	Finally,	a	10%	dose	deficit	in	applied	to	the	three	
voxels	shown	in	yellow.	This	gives	a	 final	 tumor	TCP	to	2.5%.	This	 is	 the	value	obtained	when	
multiplying	all	of	the	individual	voxel	TCPs	together.	
	
This	is	an	example	of	what	can	be	done	with	this	functional	approach	to	problems	of	this	type.	
We	 can	 explore	 the	 effects	 of	 repair,	 repopulation,	 redistribution,	 reoxygenation,	 and	
radiosensitivity	in	individual	voxels	or	in	many	voxels	at	the	same	time.	By	combining	functions	
together	in	compositions	of	functions		
	
	

	 51	
	

	 52	

6. Conclusions
	
	
We	have	demonstrated	 the	modeling	of	 the	5Rs	of	 radiobiology	using	 functional	programming	
with	Mathematica.	Functional	programming	is	natural	for	this	problem,	where	all	the	models	are	
represented	as	functions	and	these	functions	can	be	linked	together	as	compositions	of	functions.	
	
We	developed	a	general	convolution	model	to	calculate	the	voxel-by-voxel	BED	for	any	absorbed	
dose-rate	 input	 function,	 and	 then	 we	 added	 to	 this	 model	 models	 for	 repopulation,	
redistribution,	reoxygenation,	and	radiosensitivity.	These	models	can	be	combined	in	any	way	to	
get	 the	 composite	 BED	 in	 the	 voxels	 and	 from	 this	 the	 voxel	 TCPs	 and	 thence	 the	 TCP	 in	 the	
tumor	as	a	whole.	
	
In	 functional	programming	the	programmer	focuses	on	the	big	picture	and	the	results	desired,	
and	uses	higher-level	abstractions	and	mathematical	reasoning	in	constructing	a	program	from	a	
composition	 of	 functions.	 This	 is	 a	 natural	way	 to	 think	 about	 our	 problem,	we	want	 to	map	
functions	over	the	voxels	to	achieve	certain	goals,	those	goals	here	being	to	account	for	biological	
effects	affecting	the	BED	in	the	voxels.	Functional	programming	is	thought	of	as	a	mathematical	
activity,	with	the	primary	role	of	the	programmer	being	to	construct	a	function	to	solve	a	given	
problem,	and	the	primary	role	of	the	computer	is	to	act	as	an	evaluator	or	calculator,	its	job	being	
to	evaluate	expressions.	(Bird,	2006).	
	
The	models	developed	here	are	rather	fundamental	and	simple	and	more	sophisticated	models	
could	be	developed	including	models	of	normal	tissue	complication	probability.	With	functional	
programming	 being	 essentially	 mathematical	 programming	 whatever	 can	 be	 thought	 of	
mathematically	can	be	implemented	into	a	functional	program.	This	gives	a	lot	of	flexibility	as	to	
the	possibilities	available	for	both	investigational	and	educational	purposes.		
	
Functional	 programming	 is	 a	 different	 programming	 paradigm	 than	 traditional	 imperative	
programming.	 One	 of	 the	 hallmarks	 of	 functional	 programming	 is	 the	 presence	 of	 powerful	
abstractions	that	hide	many	of	the	details	of	mundane	operations	such	as	iteration	(Ford,	2014).	
This	generally	results	in	shorter,	easier	to	read	programs,	and	functional	programming	has	been	
referred	to	as	more	of	a	mindset	than	a	particular	set	of	tools	or	languages	(Ford,	2014).	With	all	
the	 unique	 characteristics	 it	 has,	 functional	 programming	 is	 as	 much	 a	 joy	 to	 use	 as	 it	 is	 a	
powerful	tool	for	exploration.	
	
	
	
	

	 53	

References
	
	
Barendregt	H,	Manzonetto	G,	Plasmeijer	R	(2011).	The	Imperative	and	Functional	Programming	
Paradigm.	Preprint	submitted	to	Alan	Turing	–	His	Work	and	Impact.	1-8.	
	
Bird	R,	Wadler	P	(2006).	Introduction	to	Functional	Programming.	Prentice	Hall.	
	
Bodey	 R,	 Evans	 M,	 Flux	 G	 (2004).	 Application	 of	 the	 Linear-Quadratic	 Model	 to	 Combined	
Modality	Radiotherapy.	Int.	J.	Radiation	Oncology	Biol.	Phys.	59(1):228-241	
	
Brenner	D,	Hlatky	L,	Hahnfeldt	P,	Huang	Y,	Sachs	R	(1998).	The	Linear-Quadratic	Model	and	Most	
Other	Common	Radiobiological	Models	Result	in	Similar	Predictions	of	Time-Dose	Relationships.	
Radiation	Research.	150:83-91	
	
Brenner	D	(2008).	The	Linear-Quadratic	Model	Is	an	Appropriate	Methodology	for	Determining	
Isoeffective	Doses	at	Large	Doses	Per	Fraction.	Semin	Radiat	Oncol.	18:234-239	
	
Carlson	D,	Stewart	R,	Semenenko	A	(2006).	Effects	of	oxygen	on	intrinsic	radiation	sensitivity:	A	
test	 of	 the	 relationship	 between	 aerobic	 and	hypoxic	 linear-quadratic	 (LQ)	model	 parameters.	
Med.	Phys.	33(9):3105-3115	
	
Dale	R,	Jones	B	(2007).	Radiobiological	Modelling	in	Radiation	Oncology.	The	British	Institute	of	
Radiology.	
	
Davis	M	(2000).	The	Universal	Computer:	The	Road	from	Leibniz	to	Turing.	W.W.	Norton.	
	
Ford	N	(2014).	Functional	Thinking:	Paradigm	Over	Syntax.	O'Reilly	Media.	
	
Fowler	J,	Dasu	A,	Toma-Dasu	I	(2014).	Optimum	Overall	Treatment	Time	in	Radiation	Oncology.	
Medical	Physics	Publishing.	
	
Goitein	M,	Niemierko	A,	Okunieff	P	(1995).	The	probability	of	controlling	an	inhomogeneously	
irradiated	tumour:	a	stratagem	for	improving	tumour	control	through	partical	tumour	boosting.	
Quantitative	Imaging	in	Oncology:	Proceedings	of	the	19th	LH	Gray	Conference.	British	Institute	of	
Radiology.	Chapter	2:25-39.	
	
Goitein	M	(2008).	Radiation	Oncology:	A	Physicist’s-Eye	View.	Springer.	
	
Gustafsson	J,	Nilsson	P,	Gleisner	KS	(2013).	On	the	biologically	effective	dose	(BED)—using	
convolution	for	calculating	the	effects	of	repair:	I.	Analytical	considerations.	Phys.	Med.	Biol.	58	
1507-1527.	
	
Gustafsson	J,	Nilsson	P,	Gleisner	KS	(2013	II).	On	the	biologically	effective	dose	(BED)—using	
convolution	for	calculating	the	effects	of	repair:	II.	Numerical	considerations.	Phys.	Med.	Biol.	58	
1529-1548.	
	

	 54	

Hall	E,	Giaccia	A	(2019).	Radiobiology	for	the	Radiologist.	Wolters	Kluwer.	
	
Hopewell	J,	Millar	W,	Lindquist	C	(2012).	Radiobiological	Principles:	Their	Application	to	Gamma	
Knife	Therapy.	Prog	Neurol	Surg.	25:39-54.	
	
Hu	G,	Hughes	J,	Wang	M	(2015).	How	functional	programming	mattered.	National	Science	Review.	
2:349-370.	
	
Joiner	M,	van	der	Kogel	A	(2018).	Basic	Clinical	Radiobiology.	CRC	Press	
	
Kann	BH,	et	al.	(2016).	The	impact	of	cobalt-60	source	age	on	biologically	effective	dose	in	high-
dose	functional	Gamma	Knife	radiosurgery.	J	Neurosurg.	125:154-159	
	
Lea	D,	Catcheside	D	(1942).	The	mechanism	of	the	induction	by	radiation	of	chromosome	
aberrations	in	tradescantia.	J	Genet.	44:216–245.	
	
Limpert	E,	Stahel	W,	Abbt	M	(2001).	Log-normal	Distributions	across	the	Sciences:	Keys	and	
Clues.	BioScience.	51(5)341-352	
	
Mason	D,	et	al.	(2024).	pydicom:	An	open	source	DICOM	library.	
	
Millar	WT,	Canney	PA	(1993).	Derivation	and	application	of	equations	describing	the	effects	of	
fractionated	protracted	irradiation,	based	on	multiple	and	incomplete	repair	processes.	Part	I.	
Derivation	of	equations.	Int.	J.	Radiat.	Biol.	64(3):275-91.	
	
Millar	W,	Hopewell	J,	Paddick	I,	Lindquist	C,	Nordstron	H,	Lidberg	P,	Garding	J	(2015).	The	role	of	
the	concept	of	biologically	effective	dose	(BED)	in	treatment	planning	and	radiosurgery.	Physica	
Medica	31:627-633.	
	
Petzold	C	(2008).	The	Annotated	Turing.	Wiley	Publishing.	
	
Wazer	D,	Freeman	C,	Halperin	E,.	Prosnitz	L,	Brady	L	(2007).	Principles	and	Practice	of	Radiation	
Oncology.	Lippincott	Williams	&	Wilkins.	Chapter	2,	page	15.	
	
Sinclair	WK,	Morton	RA	(1965).	X-Ray	and	ultraviolet	sensitivity	of	synchronized	Chinese	
hamster	cells	at	various	stages	of	the	cell	cycle.	Biophysical	Journal	5:	1-25.		
	
Steel	G,	McMillan	T,	Peacock	J	(1989).	The	5Rs	of	radiobiology.	Int.	J	Radiat	Biol.	56:1045-1048.	
	
Stewart	R,	Li	X	(2007).	BGRT:	Biologically	guided	radiation	therapy—The	future	is	fast	
approaching!.	Med.	Phys.	34(10);3739-3751.	
	
Tome	W,	Fowler	J	(2002).	On	cold	spots	in	tumor	subvolumes.	Med.	Phys.	29(7):1590-1598.	
	
Webb	S,	Nahum	A	(1993).	A	model	for	calculating	tumour	control	probability	in	radiotherapy	
including	the	effects	of	inhomogeneous	distributions	of	dose	and	clonogenic	cell	density.	Phys.	
Med.	Biol.	38:653-666.	
	

	 55	

Wicklin	R	(2014).	Simulate	lognormal	data	with	specified	mean	and	variance.	SAS:	The	Do	Loop	
Blog.	SAS	Institute.	
	
Wiklund	K,	Toma-Dasu	I,	Lind	B	(2014).	Impact	of	Dose	and	Sensitivity	Heterogeneity	on	TCP.	
Computational	and	Mathematical	Methods	in	Medicine.	2014:1-7	

	 56	

Appendices
	
	
Appendix	A	–	Functional	Programming	
	
Modern	computer	science	dates	back	to	the	1930s	with	the	work	of	Alan	Turing,	Alonzo	Church,	
and	 others	 in	 their	 investigations	 into	 the	 foundations	 of	 computability	 theory.	 These	
investigators	 were	 addressing	 David	 Hilbert’s	 famous	 Entscheidungsproblem,	 or	 “decision	
problem.”	 In	 1936,	 both	 Church	 and	 Turing,	 in	 that	 order,	 published	 papers	 showing	 that	 a	
general	solution	to	this	decision	problem	was	not	possible.	In	doing	so,	it	has	been	said	that	they	
ushered	 in	both	 the	modern	 computer	and	 the	mathematical	 study	of	 the	 computable	and	 the	
uncomputable	(Petzold	2008).	
	
As	 a	 part	 of	 these	 investigations,	 Turing	 invented	 what	 are	 now	 called	 Turing	 machines	 and	
Church	invented	the	lambda	calculus.	Also,	out	of	these	investigations,	the	modern	notion	of	an	
algorithm	was	defined,	and	through	the	Church-Turing	thesis	it	was	declared	that	anything	that	
can	be	computed	with	an	algorithm	can	be	computed	with	a	Turing	machine.	Furthermore,	it	was	
shown	 that	 other	models	 of	 computation,	 including	Church’s	 lambda	 calculus,	 have	 equivalent	
power	 to	 Turing	 machines.	 Such	 systems	 that	 are	 equivalent	 to	 Turing	 machines	 in	
computational	power	are	called	Turing	complete,	and	all	systems	that	are	Turing	complete	have	
exactly	 the	 same	 capabilities	 and	 limitations.	 These	 equivalent	 systems	 of	 computation	 may,	
however,	 have	 very	 different	 characteristics,	 making	 some	 systems	more	 suited	 to	 particular	
types	 of	 problem	 solving	 than	 others.	 Functional	 programming	 languages	 are	 both	 Turing	
complete	 and	 they	 have	 very	 different	 characteristics	 than	 languages	 based	 on	 the	 Turing	
machine	model	of	computation.	
	
Computability	 via	 Turing	machines	 gave	 rise	 to	 imperative	 programming,	while	 computability	
via	 the	 lambda	 calculus	 gave	 rise	 to	 functional	 programming	 (Barendregt	 2011).	 Turing	
machines	are	state-based	models	of	computation,	essentially	being	finite	state	machines	that	can	
read	from	and	write	to	an	infinitely	 long	tape.	They	follow	instructions	 imperatively,	 in	a	well-
defined	step-by-step	process,	and	the	internal	state	of	the	system	changes	during	computation.	
The	 lambda	 calculus	 is	 a	 functional	 model	 of	 computation,	 where	 everything	 is	 seen	 as	 a	
function,	 and	 computation	 is	 seen	 as	 the	 evaluation	 of	 a	 function,	 and	 the	 function	 being	
evaluated	 is	 generally	 a	 composition	 of	 other	 functions,	 which	may	 be	 compositions	 of	 other	
functions	themselves,	and	so	on.	There	is	no	internal	state	in	this	model	of	computation,	only	the	
evaluation	of	functions,	and	what	happens	inside	a	function	is	considered	to	be	a	black	box,	the	
internal	workings	unknown	and	not	of	interest	to	the	programmer.	This	is	a	stateless	model	of	
computation,	 and	 this	 leads	 to	 many	 of	 the	 unique	 and	 useful	 properties	 of	 functional	
programming.	
	
Unlike	imperative	programming	where	the	programmer	explicitly	specifies	the	flow	of	control	in	
a	program,	functional	programming	is	declarative,	meaning	the	programmer	declares	what	they	
want	 to	 accomplish	 rather	 than	 providing	 step-by-step	 instructions	 on	 how	 to	 implement	 the	
task.	 For	 example,	 in	 this	 book	 a	 function	 called	Map	 is	 used	 to	map	 radiobiological	 functions	
over	 the	 voxels.	Map	 is	 used	 in	 a	declarative	manner,	where	we	declare	 that	we	want	 to	map	
functions	 over	 the	 voxels,	 but	 we	 leave	 the	 details	 of	 the	 implementation	 to	 the	 functional	
language	itself.	

	 57	

	
The	first	high-level	imperative	programming	language	was	Fortran	which	was	released	in	1957.	
The	first	functional	language	was	Lisp	released	in	1958.	The	name	Lisp	derives	from	the	term	list	
processor	and	speaks	to	the	importance	of	lists	as	the	primary	data	structure	used	in	functional	
languages.	Imperative	languages	matched	more	naturally,	and	were	easier	to	implement	on	the	
von	Neumann	architectures	and	limited	memory	capacities	of	early	computers,	and	imperative	
programming	won	 out	 as	 the	 dominate	 type	 of	 computer	 programming.	 Functional	 languages	
make	 more	 demands	 on	 computer	 resources,	 and	 for	 years	 were	 largely	 relegated	 to	 the	
academic	community,	but	have	recently	shown	a	significant	increase	in	popularity.	Advances	in	
computer	 technology,	 particularly	 in	 multicore	 computing,	 are	 responsible	 for	 the	 increased	
interest	in	functional	programming.	
	
Functional	 languages	 include	Lisp	and	Common	Lisp,	Haskell,	 Scheme,	Clojure,	Erlang,	F#,	 and	
others.	The	Wolfram	Language	(the	programming	language	of	Mathematica)	is	a	multi-paradigm	
programming	 language,	 but	 is	 built	 on	 a	 functional	 programming	 foundation,	 and	 is	 the	
functional	 language	 used	 in	 this	 book.	 Many	 traditional	 imperative	 languages	 have	 recently	
added	functional	extensions,	such	as	lambda	expressions,	and	these	extensions	are	now	found	in	
Java,	 Python,	 Perl,	 and	 many	 other	 languages.	 It	 is	 becoming	 more	 common	 to	 use	 a	 hybrid	
approach	in	programming	where	both	imperative	and	functional	programming	styles	are	used	in	
the	 same	program,	 and	 in	 this	book	Python	 is	used	 imperatively	 for	 input/output	 tasks,	while	
Mathematica	 is	 used	 in	 a	 functional	 manner	 for	 performing	 the	 actual	 voxel-based	
radiobiological	modeling.	

	 58	

Appendix	B	–	Linear	Quadratic	Modeling	
	
We	demonstrate	some	basics	of	linear	quadratic	modeling.		
	

	
Here	we	show	a	single	dose	fraction	to	tumor	with	an	a/b	of	10	Gy	and	to	(late	responding)	
normal	tissue	with	an	a/b	of	3	Gy.	
	

	
This	shows	the	tumor	curve	with	an	a/b	of	10	Gy.	

	

	
The	𝛼	parameter	gives	the	natural	logs	of	irrepairable	cell	kill	per	unit	dose	of	radiation.	The	𝛽	
parameter	gives	the	natural	logs	of	repairable	cell	kill	per	unit	dose	squared	of	radiation.	Two	
units	of	dose	are	involved	because	this	component	of	cell	killing	is	made	up	of	the	interaction	of	
two	different	particles	(or	tracks	or	clusters)	of	radiation.	
	

	
These	two	components	form	the	linear	quadradic	equation	𝑆𝐹 = exp(−𝛼𝐷 − 𝛽𝐷!)	which	can	
also	be	written	as	𝑆𝐹 = exp(−𝛼𝐷)	exp(−𝛽𝐷!).	

	 59	

	
The	a/b	is	defined	as	the	dose	where	the	exp(−𝛼𝐷)	component	of	cell	killing	equals	that	due	to	
the	exp(−𝛽𝐷!)	component.	Here	the	a/b	can	be	seen	to	be	10	Gy.	
	

	
The	exp(−𝛽𝐷!)	component	of	cell	killing	is	considered	repairable	and	with	a	lowering	of	dose-
rate	either	through	fractionation	or	going	to	a	lower	dose-rate	this	part	of	the	cell	killing	can	be	
repaired	and	removed.	
	

	
And	the	lower	the	dose-rate,	the	more	of	this	b	component	is	repaired	and	doesn’t	contribute	to	
the	total	cell	killing.	

	

	
At	very	low	dose-rates	or	with	extreme	fractionation,	this	b	component	is	completely	removed	
and	we	are	left	with	the	above	pure	exponential	curve	just	involving	the	a	component	exp(−𝛼𝐷).	
	
	

	 60	

	
A	split	dose	experiment	can	demonstrate	the	difference	in	fractionation	effects	between	tumor	
(a/b	=	10	Gy)	and	normal	tissue	(a/b	=	3	Gy).	The	lower	the	a/b,	the	more	sensitive	the	tissue	is	
to	fractionation	or	other	dose-rate	effects.	

	
Now	we	demonstrate	some	of	these	concepts	with	Mathematica.	We	start	with	a	tumor	curve	
with	a/b	=	10	Gy	and	normal	tissue	curve	with	a/b	=	3	Gy,	with	6	Gy	fractions	to	a	total	dose	of	
60	Gy.	
	

	
	
	

	 61	

	

	 62	

	
	

	 63	

	
	

	
This	shows	that	these	three	dose	delivery	methods	give	the	same	amount	of	tumor	killing	and	
this	is	why	they	are	considered	equivalent.	The	BED	is	given	at	a	dose-rate	where	there	is	
complete	repair	of	the	b	component	and	that	is	why	BED	doses	are	always	the	highest.	

	 64	

Appendix	C	–	DICOM	RTDose	File	
	
This	is	the	DICOM	RTDose	file	called	“composite_dose”	that	contains	an	array	of	the	doses	in	each	
voxel.	This	dose	array	is	contained	in	the	Pixel	Data	attribute	that	we	will	access	with	Pydicom.	
Also	important	in	the	file	below	is	the	Image	Position	(Patient)	which	gives	us	the	position	of	the	
first	voxel	in	the	dose	array	(more	precisely	it	gives	the	position	of	the	first	pixel	in	the	first	slice	
of	the	dataset)	and	also	the	Dose	Grid	Scaling	factor	that	will	convert	the	dose	array	values	to	Gy.	
Also	 notice	 the	 “number	 of	 frames”	 or	 slices	 is	 11	 and	 that	 there	 are	 10	 rows	 and	 9	 columns	
forming	an	11x10x9	dose	array.	Also	note	that	the	pixel	spacing	is	1	mm.	
	

	
	

	 65	

Appendix	C	–	DICOM	RTDose	File	(cont)	
	
We	access	the	dose	array	with	the	following	command,	“composite_dose.pixel_array.”	Notice	the	
maximum	 array	 value	 is	 65535	 (216-1)	 and	 when	 multiplied	 by	 the	 Dose	 Grid	 Scaling	 factor	
above	gives	a	dose	of	36.3	Gy,	which	we	saw	was	the	maximum	dose	in	the	dataset.	
	
	

	

	 66	

Appendix	D	–	DICOM	RTSTRUCT	File	
	
This	is	the	DICOM	RTSTRUCT	file	that	contains	the	contour	information	in	the	form	of	polygon	
vertices.	Three	contours	are	shown	at	the	bottom	of	the	file.	The	first	one	has	12	contour	(vertex)	
points	and	is	at	z-coordinate	31.1290617	mm.	The	second	one	has	21	contour	points	and	is	at	z-
coordinate	30.1290617	mm.	
	

	

	

	 67	

Appendix	D	–	DICOM	RTSTRUCT	File	(cont)	
	
The	way	 the	contour	vertex	data	 is	extracted	 from	the	RTSTRUCT	 file	 is	 shown	below	 for	 two	
slices	 of	 the	 dataset.	 The	 first	 slice	 is	 Contours[0]	 (Python	 starts	 indexing	 with	 0	 while	 in	
Mathematica	we	will	start	 indexing	with	1.)	Note	how	this	data	corresponds	to	 the	data	 in	 the	
first	slice	above	with	the	12	contour	(vertex)	points	and	z-coordinate	31.1290617	mm.	
	

	
	
Contours[8]	below	corresponds	to	slice	9	in	Mathematica	and	is	at	z-coordinate	23.1290617	mm.	
This	is	the	slice	with	the	highest	dose	(and	BED)	and	we	will	use	it	in	some	examples.	
	

		

	 68	

Appendix	E	–	Determining	which	Voxels	Lie	within	the	Contours	–	Imperatively	
	
This	Python/Pydicom	program	determines	which	voxels	lie	within	the	boundary	of	the	contour	
of	interest.	Those	voxels	within	the	contour	boundary	are	marked	by	setting	their	dose	value	to	
zero.	
	

1. Read	in	the	DICOM	RTDose	file	and	RTStruct	file.	
2. Get	the	x	and	y	coordinates	of	the	dose	array	origin.	
3. Get	number	of	rows	and	columns	in	dose	array	and	determine	pixel	spacing.	
4. Get	number	of	slices	in	dose	array	and	number	of	contour	slices.	
5. Determine	which	dose	array	slice	corresponds	to	the	first	contour	slice.	
6. Form	an	array	of	contour	polygon	vertex	values.	
7. For	 each	 contour	 slice	determine	which	voxels	 in	 the	dose	 array	 lie	within	 the	 contour	

boundary.	 This	 is	 done	 by	 using	 the	 Matplotlib	 path	 module	 and	 testing	 if	 the	 voxel	
coordinates	lie	within	the	contour	polygon	using	the	contains_point	function.	

8. Mark	the	voxels	that	lie	within	the	contour	boundary	by	setting	their	dose	value	to	zero.	
9. Save	 the	modified	DICOM	 file	and	save	 the	modified	array	data	 to	a	 list	 for	 import	 into	

Mathematica.	
	

	
	

	 69	

Appendix	E	–	Determining	which	Voxels	Lie	within	the	Contours	–	Imperatively	(cont)	
	
This	was	the	original	composite_dose.pixel_array	data.	
	

	

	 70	

Appendix	E	–	Determining	which	Voxels	Lie	within	the	Contours	–	Imperatively	(cont)	
	
This	is	the	modified	composite	dose.pixel_array	data	where	those	voxels	within	the	contours	are	
set	to	zero.	
	

	

	 71	

	
Appendix	E	–	Determining	which	Voxels	Lie	within	the	Contours	–	Imperatively	(cont)	
	
We	can	see	how	this	data	looks	in	Mathematica	with	tumor	voxels	within	the	contour	in	red.	
	

	

	 72	

Appendix	F	–	Determining	which	Voxels	Lie	within	the	Contours	–	Functionally	
	
Alternatively,	 we	 can	 bring	 the	 contour	 polygon	 vertex	 data	 directly	 into	 Mathematica	 and	
determine	the	voxels	lying	within	the	contours	in	the	functional	manner	demonstrated	here.	The	
main	 program	 here	 comes	 from	Wellin’s	 “Programming	 with	Mathematica”	 (2013).	 Also,	 the	
program	 in	 Appendix	 G	 (Obtaining	 Vertices	 of	 Contour	 Polygons)	 is	 needed	 to	 obtain	 the	
“contour_slice_data_for_Mathematica.”	
	

	
	
	

	 73	

Appendix	F	–	Determining	which	Voxels	Lie	within	the	Contours	–	Functionally	(cont)	
	

	

	 74	

Appendix	F	–	Determining	which	Voxels	Lie	within	the	Contours	–	Functionally	(cont)	
	

	
	
	

	 75	

Appendix	F	–	Determining	which	Voxels	Lie	within	the	Contours	–	Functionally	(cont)	
	

	

	 76	

Appendix	G	–	Obtaining	Vertices	of	Contour	Polygons	
	
Gets	the	coordinates	of	the	polygon	vertices	that	make	up	the	contours	and	prints	them	to	a	text	
file	for	import	into	Mathematica.	
	

	

	 77	

Appendix	H	–	Creating	a	List	of	Shot	Times	and	Shot	Dose	Rates	in	each	Voxel	
	
This	Python	program	forms	a	list	of	the	Gamma	Knife	shot	times	and	shot	dose-rates	for	all	the	
voxels	in	the	dose	array	and	writes	this	list	to	a	text	file.	In	this	example	there	are	6	shots,	each	
with	an	associated	time	and	dose-rate.	The	complete	list	therefore	has	dimension	11x10x9x6x2.	
	

1. Read	in	the	DICOM	RTDose	files	for	each	of	the	Gamma	Knife	shots.	
2. Form	a	list	of	the	individual	shot	times.	
3. Iterate	through	the	dose	array	and	convert	the	shot	dose	to	shot	dose-rate.	
4. Form	an	array	of	voxel	shot	times	and	voxel	shot	dose-rates.	
5. Convert	this	array	to	a	list	and	write	this	list	to	a	text	file.	

	

	
	

	 78	

Appendix	I	–	Importing	the	List	of	Shot	Times	and	Shot	Dose	Rates	into	Mathematica	
	
This	 code	 imports	 the	 Shot	 Times	 and	 Shot	 Dose	 Rates	 produced	 by	 the	 Python	 program	 in	
Appendix	H	into	Mathematica.	
	

	
	
	
	

	 79	

Appendix	J	–	Gamma	Knife	Case	
	
This	shows	the	Mathematica	code	for	the	complete	Gamma	Knife	case.	
	

	
	
	

	 80	

	

	

	 81	

	
	

	
	

	 82	

	
	

	 83	

	
	
	
	
	
	

	 84	

	

	
	
	
	

	 85	

Appendix	K	–	Exporting	the	Results	out	of	Mathematica	
	
We	prepare	the	VoxelBeds	data	produced	in	Mathematica	for	import	into	Python/Pydicom.	
	

	
	

	 86	

Appendix	L	–	Changing	the	Original	DICOM	Dose	File	to	a	DICOM	BED	File	
	
This	Python	program	converts	the	original	DICOM	RTDose	file	from	one	containing	the	original	
dose	 values	 to	 one	 containing	 the	 BED	 values	 calculated	 in	Mathematica.	 This	 allows	 us	 to	
display	the	BED	dose	on	the	treatment	plan	rather	than	the	physical	dose.	
	

1. Read	in	the	original	“composite	dose”	DICOM	RTDose	file.	
2. Read	in	the	“VoxelBedsForDicom”	text	file	produced	in	Mathematica.	
3. Prepare	the	BED	values	by	scaling	to	prevent	overflow	above	65535	(216	-	1).	
4. Overwrite	the	DICOM	Dose	Grid	Scaling	Factor.	
5. Overwrite	the	dose	values	in	the	DICOM	pixel_array	with	BED	values.	
6. Save	the	updated	RTDose	file	as	“composite	beds.”	

	

	
	
	
	
	
	
	
	
	
	
	
	
	

	 87	

Appendix	M	–	Voxel	Graphics	
	
Once	we	 determine	which	 voxels	 lie	within	 the	 contours,	 either	 imperatively	 (Appendix	 E)	 or	
functionally	(Appendix	F),	we	can	display	this	data	in	Mathematica.	
	

	
	
	

	 88	

Appendix	M	–	Voxel	Graphics	(cont)	
	

	
	
	
	

	 89	

Appendix	N	–	Thirty	Fraction	Case	
	
We	do	an	analysis	of	a	conventional	thirty	2	Gy	fraction	treatment,	5	treatments	per	week	with	
weekend	breaks.	We	use	an	a/b	of	10	Gy.	We	know	the	BED	is	72	Gy	for	this	case.	We	initially	
use	a	 fraction	 time	of	1	minute	and	a	 repair	half-life	of	1	hour.	Then	we	decrease	 the	 fraction	
time	to	10	seconds	to	see	the	effect	on	BED.	
	

	 	 	
	

	
	

	

	 90	

	

	
	

	
	
	
	

	 91	

	
	
Here	we	see	the	BED	is	71.954	Gy,	very	close	to	the	calculated	value	of	72	Gy.	The	calculated	
value	assumes	instantaneous	fraction	times	and	during	our	1	minute	treatment	there	is	some	
repair	of	sublethal	damage	lowering	the	BED.	In	the	next	example	we	shorten	the	fraction	time	to	
10	seconds	and	this	raises	the	BED	to	71.992	Gy.	We	will	explore	this	concept	further	in	
Appendix	O.	
	

	

	 92	

Appendix	O	–	Three	Fraction	Case	
	
Here	we	will	use	a	three	fraction	treatment	to	explore	the	assumptions	that	the	traditional	BED	
formula	for	fractionated	therapy	is	based	on	the	fact	that	the	fraction	durations	are	short	and	the	
inter-fraction	times	are	long,	compared	to	the	rate	of	repair.	This	assures	that	the	repair	during	
the	fraction	is	negligible	and	that	the	repair	between	fractions	is	complete.		
	

	
	
	

	 93	
	

	 94	

	

	 95	

Appendix	P	–	Hyperfractionation	
	
Here	we	explore	a	hyperfractionation	treatment	described	in	Jack	Fowler’s	book	“Optimal	
Overall	Treatment	Time	in	Radiation	Oncology.”	This	is	RTOG	HFX	(Fu	et	al.	2000).	This	
treatment	gives	81.6	Gy	in	68	fractions	BID.	Here	I	will	do	one	week	of	treatment	and	multiply	
the	results	by	6.8.	
	

	
	
	
	
	

	 96	

	
	

	 97	

	
	

	 98	

Appendix	Q	–	LDR	and	HDR	
	
Now	we	will	look	at	LDR	and	HDR	treatments.	It	is	stated	in	Joiner	and	van	der	Kogel’s	Basic	
Clinical	Radiobiology	(Joiner,	2018)	that	for	full	repair	of	sublethal	damage	to	occur	during	
treatment	the	dose-rate	must	be	less	than	about	5	cGy/hour.	We	will	start	by	examining	this.	
	
	

	
	

	 99	

	
	

	 100	

	 101	

Appendix	R	–	PDR	
	
Here	we	explore	a	PDR	treatment,	where	the	goal	is	to	use	HDR	to	mimic	an	LDR	treatment	in	
terms	of	BED.	We	will	deliver	0.5	Gy	every	hour	for	40	hours	for	a	total	dose	of	20	Gy.	
	

	

	 102	

	
	

	 103	

	
	
	
	

	 104	

	
	
	
	
	
	
	
	
	
	
	
	

	 105	

Appendix	S	–	I-125	and	Pd-103	Treatment	
	
We	 will	 now	 explore	 I-125	 and	 Pd-103	 dosimetry.	 Here	 we	 will	 see	 that	 the	 form	 of	 the	
convolution	equation	we	use	as	explained	in	Section	4.2	makes	a	slight	difference	in	the	results.	
	

	

	 106	

	 107	

	
	
	

	 108	
	

	 109	

	
	
	

	 110	

Appendix	T	–	Radionuclide	Therapy	
	
We	will	explore	radionuclide	therapy	based	on	a	case	involving	Lu-177	octreotate	described	in	a	
paper	by	Gustafsson	(2013	II).	
	

	

	 111	

	
	

	 112	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	 113	

Index
	 	
	
	Biologically	Effective	Dose	(BED)	..	7	
	 Theory	...	7	
Convolution	to	get	BED	...	9	
Dimensionless	Time-Protraction	Function	(G)	...	8	
DICOM	RTDose	File	..	21,64	
DICOM	RTStructure	Set	File	...	21,66	
Dose-Rate	Input	Functions	...	11	
Functional	Programming	..	2,56	
Gamma	Knife	Case	..	79	
Heterogeneity	Model	...	18	
	 Theory	..	18	
	 NormalDistribution	..	18	
	 LogNormalDistribution	..	18	
	 Implementation	..	34,35	
	 Results	..	47,48	
Hyperfractionation	...	95	
I-125	and	Pd-103	Treatment	...	105	
Imperative		Programming	..	2,56	
LDR	and	HDR	..	98	
Linear	Quadratic	Model	..	6,	58	
	 Theory	...	8,58	
Map	...	3	
Parallel	Map	..	3	
Partition	coefficient	...	10	
PDR	..	101	
Psi	..	10	
Pydicom	...	21	
Radionuclide	Therapy	...	110	
Radiation	Response	Modifying	Functions	..	15	
Radiosensitivity	Model	...	17	
	 Theory	..	17	
	 Alpha	parameter	..	17	
	 Implementation	..	34	
	 Results	..	47	
Redistribution	Model	..	14	
	 Theory	..	14	
	 Cell	Cycle	...	14	
	 RandomChoice	..	16	
	 Nest	..	16	
	 Implementation	..	31	
	 Results	..	44	
Reoxygenation	Model	..	16	
	 Theory	..	16	
	 Reoxygenation	Rate	..	17	

	 114	

	 Fold	...	17	
	 Implementation	..	33	
	 Results	...	45	
Repair	Model	..	8,9,10	
	 Theory	...	8	
	 Implementation	..	22	
	 Results	...	41	
Repopulation	Model	...	12	
	 Theory	...	12	
	 Teff	..	12	
	 Growth	Fraction	..	13	
	 Cell	Loss	..	13	
	 Tpot	..	13	
	 Continuous	and	Discontinuous	Repopulation	Models	...	14	
	 Progressive	Model	of	Repopulation	...	14	
	 Implementation	..	30	
	 Results	...	43	
Survival	Fraction	..	6	
	 Theory	..	6,7,8	
Thirty	Fraction	Case	...	89	
Three	Fraction	Case	..	92	
Tumor	Control	Probability	(TCP)	Model	...	18	
	 Theory	...	19	
	 Implementation	..	37	
	 Results	...	50	
Validation	...	38,39,40	
Voxel	Graphics	..	87	
	

